Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,59 @@
|
|
1 |
-
import os, copy
|
2 |
-
os.environ["RWKV_JIT_ON"] = '1'
|
3 |
-
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
4 |
-
# make sure cuda dir is in the same level as modeling_rwkv.py
|
5 |
-
from modeling_rwkv import RWKV
|
6 |
-
|
7 |
-
import gc, re
|
8 |
import gradio as gr
|
9 |
-
import
|
10 |
-
from io import BytesIO
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
from datetime import datetime
|
14 |
-
from transformers import CLIPImageProcessor
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
from pynvml import *
|
17 |
nvmlInit()
|
18 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
19 |
-
|
20 |
-
|
21 |
-
ctx_limit = 2500
|
22 |
gen_limit = 500
|
23 |
gen_limit_long = 800
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
model_path_v6 = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title_v6}.pth")
|
31 |
-
# model_path_v6 = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-3b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-1; python app.py
|
32 |
-
model_v6 = RWKV(model=model_path_v6, strategy='cuda fp16')
|
33 |
-
pipeline_v6 = PIPELINE(model_v6, "rwkv_vocab_v20230424")
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
42 |
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
|
43 |
-
|
44 |
-
state_eng_raw = torch.load(eng_file, map_location=torch.device('cpu'))
|
45 |
-
state_chn_raw = torch.load(chn_file, map_location=torch.device('cpu'))
|
46 |
-
|
47 |
state_eng = [None] * args.n_layer * 3
|
|
|
|
|
|
|
|
|
48 |
state_chn = [None] * args.n_layer * 3
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
for i in range(args.n_layer):
|
50 |
-
dd =
|
51 |
dev = dd.device
|
52 |
atype = dd.atype
|
53 |
state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
54 |
-
state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
55 |
state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
56 |
-
state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
57 |
state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
58 |
-
state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
model = RWKV(model=model_path, strategy='cuda fp16')
|
66 |
-
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
67 |
|
68 |
def generate_prompt(instruction, input=""):
|
69 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
@@ -78,13 +68,15 @@ def qa_prompt(instruction):
|
|
78 |
instruction = re.sub(r'\n+', '\n', instruction)
|
79 |
return f"User: {instruction}\n\nAssistant:"""
|
80 |
|
|
|
|
|
81 |
def evaluate(
|
82 |
ctx,
|
83 |
-
token_count=
|
84 |
temperature=1.0,
|
85 |
-
top_p=0.
|
86 |
-
presencePenalty = 0.
|
87 |
-
countPenalty = 0.
|
88 |
):
|
89 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
90 |
alpha_frequency = countPenalty,
|
@@ -98,30 +90,22 @@ def evaluate(
|
|
98 |
occurrence = {}
|
99 |
state = None
|
100 |
for i in range(int(token_count)):
|
101 |
-
|
102 |
-
out, state = model_v6.forward(tokens=input_ids, state=state)
|
103 |
for n in occurrence:
|
104 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
105 |
|
106 |
-
token =
|
107 |
if token in args.token_stop:
|
108 |
break
|
109 |
all_tokens += [token]
|
110 |
for xxx in occurrence:
|
111 |
occurrence[xxx] *= penalty_decay
|
112 |
-
|
113 |
-
ttt = pipeline_v6.decode([token])
|
114 |
-
www = 1
|
115 |
-
if ttt in ' \t0123456789':
|
116 |
-
www = 0
|
117 |
-
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
118 |
-
# www = 0.5
|
119 |
if token not in occurrence:
|
120 |
-
occurrence[token] =
|
121 |
else:
|
122 |
-
occurrence[token] +=
|
123 |
-
|
124 |
-
tmp =
|
125 |
if '\ufffd' not in tmp:
|
126 |
out_str += tmp
|
127 |
yield out_str.strip()
|
@@ -129,7 +113,7 @@ def evaluate(
|
|
129 |
|
130 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
131 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
132 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
133 |
del out
|
134 |
del state
|
135 |
gc.collect()
|
@@ -138,11 +122,11 @@ def evaluate(
|
|
138 |
|
139 |
def evaluate_eng(
|
140 |
ctx,
|
141 |
-
token_count=
|
142 |
temperature=1.0,
|
143 |
-
top_p=0.
|
144 |
-
presencePenalty
|
145 |
-
countPenalty
|
146 |
):
|
147 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
148 |
alpha_frequency = countPenalty,
|
@@ -156,30 +140,22 @@ def evaluate_eng(
|
|
156 |
occurrence = {}
|
157 |
state = copy.deepcopy(state_eng)
|
158 |
for i in range(int(token_count)):
|
159 |
-
|
160 |
-
out, state = model_v6.forward(tokens=input_ids, state=state)
|
161 |
for n in occurrence:
|
162 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
163 |
|
164 |
-
token =
|
165 |
if token in args.token_stop:
|
166 |
break
|
167 |
all_tokens += [token]
|
168 |
for xxx in occurrence:
|
169 |
occurrence[xxx] *= penalty_decay
|
170 |
-
|
171 |
-
ttt = pipeline_v6.decode([token])
|
172 |
-
www = 1
|
173 |
-
if ttt in ' \t0123456789':
|
174 |
-
www = 0
|
175 |
-
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
176 |
-
# www = 0.5
|
177 |
if token not in occurrence:
|
178 |
-
occurrence[token] =
|
179 |
else:
|
180 |
-
occurrence[token] +=
|
181 |
-
|
182 |
-
tmp =
|
183 |
if '\ufffd' not in tmp:
|
184 |
out_str += tmp
|
185 |
yield out_str.strip()
|
@@ -187,7 +163,7 @@ def evaluate_eng(
|
|
187 |
|
188 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
189 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
190 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
191 |
del out
|
192 |
del state
|
193 |
gc.collect()
|
@@ -196,11 +172,11 @@ def evaluate_eng(
|
|
196 |
|
197 |
def evaluate_chn(
|
198 |
ctx,
|
199 |
-
token_count=
|
200 |
temperature=1.0,
|
201 |
-
top_p=0.
|
202 |
-
presencePenalty
|
203 |
-
countPenalty
|
204 |
):
|
205 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
206 |
alpha_frequency = countPenalty,
|
@@ -214,30 +190,22 @@ def evaluate_chn(
|
|
214 |
occurrence = {}
|
215 |
state = copy.deepcopy(state_chn)
|
216 |
for i in range(int(token_count)):
|
217 |
-
|
218 |
-
out, state = model_v6.forward(tokens=input_ids, state=state)
|
219 |
for n in occurrence:
|
220 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
221 |
|
222 |
-
token =
|
223 |
if token in args.token_stop:
|
224 |
break
|
225 |
all_tokens += [token]
|
226 |
for xxx in occurrence:
|
227 |
occurrence[xxx] *= penalty_decay
|
228 |
-
|
229 |
-
ttt = pipeline_v6.decode([token])
|
230 |
-
www = 1
|
231 |
-
if ttt in ' \t0123456789':
|
232 |
-
www = 0
|
233 |
-
#elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
|
234 |
-
# www = 0.5
|
235 |
if token not in occurrence:
|
236 |
-
occurrence[token] =
|
237 |
else:
|
238 |
-
occurrence[token] +=
|
239 |
-
|
240 |
-
tmp =
|
241 |
if '\ufffd' not in tmp:
|
242 |
out_str += tmp
|
243 |
yield out_str.strip()
|
@@ -245,7 +213,57 @@ def evaluate_chn(
|
|
245 |
|
246 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
247 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
248 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
del out
|
250 |
del state
|
251 |
gc.collect()
|
@@ -259,7 +277,7 @@ examples = [
|
|
259 |
[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
|
260 |
["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
|
261 |
['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
|
262 |
-
[generate_prompt("Write a simple
|
263 |
['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境��は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
|
264 |
["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
|
265 |
["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
|
@@ -281,156 +299,29 @@ examples_chn = [
|
|
281 |
["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
282 |
["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
283 |
["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
284 |
-
["以 JSON
|
285 |
["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
286 |
["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
287 |
]
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
config = VisionEncoderConfig(n_embd=model.args.n_embd,
|
302 |
-
vision_tower_name=vision_tower_name,
|
303 |
-
grid_size=-1)
|
304 |
-
visual_encoder = VisionEncoder(config)
|
305 |
-
vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
|
306 |
-
vision_state_dict = torch.load(vision_local_path, map_location='cpu')
|
307 |
-
visual_encoder.load_state_dict(vision_state_dict)
|
308 |
-
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
|
309 |
-
visual_encoder = visual_encoder.to(device)
|
310 |
-
##########################################################################
|
311 |
-
def visual_generate_prompt(instruction):
|
312 |
-
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
313 |
-
return f"\n{instruction}\n\nAssistant:"
|
314 |
-
|
315 |
-
def generate(
|
316 |
-
ctx,
|
317 |
-
image_state,
|
318 |
-
token_count=200,
|
319 |
-
temperature=1.0,
|
320 |
-
top_p=0.1,
|
321 |
-
presencePenalty = 0.0,
|
322 |
-
countPenalty = 1.0,
|
323 |
-
):
|
324 |
-
args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.1,
|
325 |
-
alpha_frequency = 1.0,
|
326 |
-
alpha_presence = 0.0,
|
327 |
-
token_ban = [], # ban the generation of some tokens
|
328 |
-
token_stop = [0, 261]) # stop generation whenever you see any token here
|
329 |
-
ctx = ctx.strip()
|
330 |
-
all_tokens = []
|
331 |
-
out_last = 0
|
332 |
-
out_str = ''
|
333 |
-
occurrence = {}
|
334 |
-
for i in range(int(token_count)):
|
335 |
-
if i == 0:
|
336 |
-
input_ids = pipeline.encode(ctx)[-ctx_limit:]
|
337 |
-
out, state = visual_rwkv.forward(tokens=input_ids, state=image_state)
|
338 |
-
else:
|
339 |
-
input_ids = [token]
|
340 |
-
out, state = visual_rwkv.forward(tokens=input_ids, state=state)
|
341 |
-
for n in occurrence:
|
342 |
-
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
343 |
-
|
344 |
-
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
345 |
-
if token in args.token_stop:
|
346 |
-
break
|
347 |
-
all_tokens += [token]
|
348 |
-
for xxx in occurrence:
|
349 |
-
occurrence[xxx] *= 0.994
|
350 |
-
if token not in occurrence:
|
351 |
-
occurrence[token] = 1
|
352 |
-
else:
|
353 |
-
occurrence[token] += 1
|
354 |
-
|
355 |
-
tmp = pipeline.decode(all_tokens[out_last:])
|
356 |
-
if '\ufffd' not in tmp:
|
357 |
-
out_str += tmp
|
358 |
-
yield out_str.strip()
|
359 |
-
out_last = i + 1
|
360 |
-
|
361 |
-
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
362 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
363 |
-
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
364 |
-
del out
|
365 |
-
del state
|
366 |
-
gc.collect()
|
367 |
-
torch.cuda.empty_cache()
|
368 |
-
yield out_str.strip()
|
369 |
-
|
370 |
-
|
371 |
-
##########################################################################
|
372 |
-
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
373 |
-
visual_examples = [
|
374 |
-
[
|
375 |
-
f"{cur_dir}/examples_pizza.jpg",
|
376 |
-
"What are steps to cook it?"
|
377 |
-
],
|
378 |
-
[
|
379 |
-
f"{cur_dir}/examples_bluejay.jpg",
|
380 |
-
"what is the name of this bird?",
|
381 |
-
],
|
382 |
-
[
|
383 |
-
f"{cur_dir}/examples_woman_and_dog.png",
|
384 |
-
"describe this image",
|
385 |
-
],
|
386 |
-
]
|
387 |
-
|
388 |
-
|
389 |
-
def pil_image_to_base64(pil_image):
|
390 |
-
buffered = BytesIO()
|
391 |
-
pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.)
|
392 |
-
# Encodes the image data into base64 format as a bytes object
|
393 |
-
base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
394 |
-
return base64_image
|
395 |
-
|
396 |
-
image_cache = {}
|
397 |
-
ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
|
398 |
-
ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
|
399 |
-
def compute_image_state(image):
|
400 |
-
base64_image = pil_image_to_base64(image)
|
401 |
-
if base64_image in image_cache:
|
402 |
-
image_state = image_cache[base64_image]
|
403 |
-
else:
|
404 |
-
image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'].to(device)
|
405 |
-
image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
|
406 |
-
# apply layer norm to image feature, very important
|
407 |
-
image_features = F.layer_norm(image_features,
|
408 |
-
(image_features.shape[-1],),
|
409 |
-
weight=ln0_weight,
|
410 |
-
bias=ln0_bias)
|
411 |
-
_, image_state = model.forward(embs=image_features, state=None)
|
412 |
-
image_cache[base64_image] = image_state
|
413 |
-
return image_state
|
414 |
-
|
415 |
-
def chatbot(image, question):
|
416 |
-
if image is None:
|
417 |
-
yield "Please upload an image."
|
418 |
-
return
|
419 |
-
image_state = compute_image_state(image)
|
420 |
-
input_text = visual_generate_prompt(question)
|
421 |
-
for output in generate(input_text, image_state):
|
422 |
-
yield output
|
423 |
-
|
424 |
-
|
425 |
-
##################################################################################################################
|
426 |
-
with gr.Blocks(title=title_v6) as demo:
|
427 |
-
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title_v6}</h1>\n</div>")
|
428 |
|
429 |
with gr.Tab("=== Base Model (Raw Generation) ==="):
|
430 |
-
gr.Markdown(f"This is [RWKV-6
|
431 |
with gr.Row():
|
432 |
with gr.Column():
|
433 |
-
prompt = gr.Textbox(lines=2, label="
|
434 |
token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
|
435 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
436 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
@@ -441,68 +332,10 @@ with gr.Blocks(title=title_v6) as demo:
|
|
441 |
submit = gr.Button("Submit", variant="primary")
|
442 |
clear = gr.Button("Clear", variant="secondary")
|
443 |
output = gr.Textbox(label="Output", lines=30)
|
444 |
-
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="
|
445 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
446 |
clear.click(lambda: None, [], [output])
|
447 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
448 |
|
449 |
-
with gr.Tab("=== English Q/A ==="):
|
450 |
-
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [English Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{eng_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
|
451 |
-
with gr.Row():
|
452 |
-
with gr.Column():
|
453 |
-
prompt = gr.Textbox(lines=2, label="Prompt", value="How can I craft an engaging story featuring vampires on Mars?")
|
454 |
-
token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
|
455 |
-
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
456 |
-
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
|
457 |
-
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
458 |
-
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
459 |
-
with gr.Column():
|
460 |
-
with gr.Row():
|
461 |
-
submit = gr.Button("Submit", variant="primary")
|
462 |
-
clear = gr.Button("Clear", variant="secondary")
|
463 |
-
output = gr.Textbox(label="Output", lines=30)
|
464 |
-
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_eng, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
465 |
-
submit.click(evaluate_eng, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
466 |
-
clear.click(lambda: None, [], [output])
|
467 |
-
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
468 |
-
|
469 |
-
with gr.Tab("=== Chinese Q/A ==="):
|
470 |
-
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [Chinese Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{chn_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
|
471 |
-
with gr.Row():
|
472 |
-
with gr.Column():
|
473 |
-
prompt = gr.Textbox(lines=2, label="Prompt", value="怎样写一个在火星上的吸血鬼的有趣故事?")
|
474 |
-
token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
|
475 |
-
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
476 |
-
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
|
477 |
-
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
|
478 |
-
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
|
479 |
-
with gr.Column():
|
480 |
-
with gr.Row():
|
481 |
-
submit = gr.Button("Submit", variant="primary")
|
482 |
-
clear = gr.Button("Clear", variant="secondary")
|
483 |
-
output = gr.Textbox(label="Output", lines=30)
|
484 |
-
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_chn, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
485 |
-
submit.click(evaluate_chn, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
486 |
-
clear.click(lambda: None, [], [output])
|
487 |
-
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
488 |
-
|
489 |
-
if ENABLE_VISUAL:
|
490 |
-
with gr.Tab("Visual RWKV-5 1.5B"):
|
491 |
-
with gr.Row():
|
492 |
-
with gr.Column():
|
493 |
-
image = gr.Image(type='pil', label="Image")
|
494 |
-
with gr.Column():
|
495 |
-
prompt = gr.Textbox(lines=8, label="Prompt",
|
496 |
-
value="Render a clear and concise summary of the photo.")
|
497 |
-
with gr.Row():
|
498 |
-
submit = gr.Button("Submit", variant="primary")
|
499 |
-
clear = gr.Button("Clear", variant="secondary")
|
500 |
-
with gr.Column():
|
501 |
-
output = gr.Textbox(label="Output", lines=10)
|
502 |
-
data = gr.Dataset(components=[image, prompt], samples=visual_examples, label="Examples", headers=["Image", "Prompt"])
|
503 |
-
submit.click(chatbot, [image, prompt], [output])
|
504 |
-
clear.click(lambda: None, [], [output])
|
505 |
-
data.click(lambda x: x, [data], [image, prompt])
|
506 |
-
|
507 |
demo.queue(concurrency_count=1, max_size=10)
|
508 |
-
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os, gc, copy, torch, re
|
|
|
|
|
|
|
3 |
from datetime import datetime
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
6 |
nvmlInit()
|
7 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
8 |
+
ctx_limit = 1024
|
|
|
|
|
9 |
gen_limit = 500
|
10 |
gen_limit_long = 800
|
11 |
+
title = "RWKV-x060-World-7B-v3-20241112-ctx4096"
|
12 |
|
13 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
14 |
+
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
15 |
|
16 |
+
from rwkv.model import RWKV
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title}.pth")
|
19 |
+
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
20 |
+
# model_path = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-7b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-2; python app_tab.py
|
21 |
+
# model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
22 |
|
23 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
24 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
25 |
|
26 |
+
args = model.args
|
27 |
+
eng_name = 'rwkv-x060-eng_single_round_qa-7B-20240516-ctx2048'
|
28 |
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
|
29 |
+
state_eng_raw = torch.load(eng_file)
|
|
|
|
|
|
|
30 |
state_eng = [None] * args.n_layer * 3
|
31 |
+
|
32 |
+
chn_name = 'rwkv-x060-chn_single_round_qa-7B-20240516-ctx2048'
|
33 |
+
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
|
34 |
+
state_chn_raw = torch.load(chn_file)
|
35 |
state_chn = [None] * args.n_layer * 3
|
36 |
+
|
37 |
+
wyw_name = 'rwkv-x060-chn_文言文和古典名著_single_round_qa-7B-20240601-ctx2048'
|
38 |
+
wyw_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{wyw_name}.pth")
|
39 |
+
state_wyw_raw = torch.load(wyw_file)
|
40 |
+
state_wyw = [None] * args.n_layer * 3
|
41 |
+
|
42 |
for i in range(args.n_layer):
|
43 |
+
dd = model.strategy[i]
|
44 |
dev = dd.device
|
45 |
atype = dd.atype
|
46 |
state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
|
47 |
state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
|
|
48 |
state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
|
49 |
|
50 |
+
state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
51 |
+
state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
52 |
+
state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
53 |
|
54 |
+
state_wyw[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
55 |
+
state_wyw[i*3+1] = state_wyw_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
56 |
+
state_wyw[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
|
|
|
57 |
|
58 |
def generate_prompt(instruction, input=""):
|
59 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
|
|
68 |
instruction = re.sub(r'\n+', '\n', instruction)
|
69 |
return f"User: {instruction}\n\nAssistant:"""
|
70 |
|
71 |
+
penalty_decay = 0.996
|
72 |
+
|
73 |
def evaluate(
|
74 |
ctx,
|
75 |
+
token_count=gen_limit,
|
76 |
temperature=1.0,
|
77 |
+
top_p=0.3,
|
78 |
+
presencePenalty = 0.3,
|
79 |
+
countPenalty = 0.3,
|
80 |
):
|
81 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
82 |
alpha_frequency = countPenalty,
|
|
|
90 |
occurrence = {}
|
91 |
state = None
|
92 |
for i in range(int(token_count)):
|
93 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
|
|
94 |
for n in occurrence:
|
95 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
96 |
|
97 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
98 |
if token in args.token_stop:
|
99 |
break
|
100 |
all_tokens += [token]
|
101 |
for xxx in occurrence:
|
102 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
if token not in occurrence:
|
104 |
+
occurrence[token] = 1
|
105 |
else:
|
106 |
+
occurrence[token] += 1
|
107 |
+
|
108 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
109 |
if '\ufffd' not in tmp:
|
110 |
out_str += tmp
|
111 |
yield out_str.strip()
|
|
|
113 |
|
114 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
115 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
116 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
117 |
del out
|
118 |
del state
|
119 |
gc.collect()
|
|
|
122 |
|
123 |
def evaluate_eng(
|
124 |
ctx,
|
125 |
+
token_count=gen_limit,
|
126 |
temperature=1.0,
|
127 |
+
top_p=0.3,
|
128 |
+
presencePenalty=0.3,
|
129 |
+
countPenalty=0.3,
|
130 |
):
|
131 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
132 |
alpha_frequency = countPenalty,
|
|
|
140 |
occurrence = {}
|
141 |
state = copy.deepcopy(state_eng)
|
142 |
for i in range(int(token_count)):
|
143 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
|
|
144 |
for n in occurrence:
|
145 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
146 |
|
147 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
148 |
if token in args.token_stop:
|
149 |
break
|
150 |
all_tokens += [token]
|
151 |
for xxx in occurrence:
|
152 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if token not in occurrence:
|
154 |
+
occurrence[token] = 1
|
155 |
else:
|
156 |
+
occurrence[token] += 1
|
157 |
+
|
158 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
159 |
if '\ufffd' not in tmp:
|
160 |
out_str += tmp
|
161 |
yield out_str.strip()
|
|
|
163 |
|
164 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
165 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
166 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
167 |
del out
|
168 |
del state
|
169 |
gc.collect()
|
|
|
172 |
|
173 |
def evaluate_chn(
|
174 |
ctx,
|
175 |
+
token_count=gen_limit,
|
176 |
temperature=1.0,
|
177 |
+
top_p=0.3,
|
178 |
+
presencePenalty=0.3,
|
179 |
+
countPenalty=0.3,
|
180 |
):
|
181 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
182 |
alpha_frequency = countPenalty,
|
|
|
190 |
occurrence = {}
|
191 |
state = copy.deepcopy(state_chn)
|
192 |
for i in range(int(token_count)):
|
193 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
|
|
194 |
for n in occurrence:
|
195 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
196 |
|
197 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
198 |
if token in args.token_stop:
|
199 |
break
|
200 |
all_tokens += [token]
|
201 |
for xxx in occurrence:
|
202 |
occurrence[xxx] *= penalty_decay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
if token not in occurrence:
|
204 |
+
occurrence[token] = 1
|
205 |
else:
|
206 |
+
occurrence[token] += 1
|
207 |
+
|
208 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
209 |
if '\ufffd' not in tmp:
|
210 |
out_str += tmp
|
211 |
yield out_str.strip()
|
|
|
213 |
|
214 |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
215 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
216 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
217 |
+
del out
|
218 |
+
del state
|
219 |
+
gc.collect()
|
220 |
+
torch.cuda.empty_cache()
|
221 |
+
yield out_str.strip()
|
222 |
+
|
223 |
+
def evaluate_wyw(
|
224 |
+
ctx,
|
225 |
+
token_count=gen_limit,
|
226 |
+
temperature=1.0,
|
227 |
+
top_p=0.3,
|
228 |
+
presencePenalty=0.3,
|
229 |
+
countPenalty=0.3,
|
230 |
+
):
|
231 |
+
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
232 |
+
alpha_frequency = countPenalty,
|
233 |
+
alpha_presence = presencePenalty,
|
234 |
+
token_ban = [], # ban the generation of some tokens
|
235 |
+
token_stop = [0]) # stop generation whenever you see any token here
|
236 |
+
ctx = qa_prompt(ctx)
|
237 |
+
all_tokens = []
|
238 |
+
out_last = 0
|
239 |
+
out_str = ''
|
240 |
+
occurrence = {}
|
241 |
+
state = copy.deepcopy(state_wyw)
|
242 |
+
for i in range(int(token_count)):
|
243 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
244 |
+
for n in occurrence:
|
245 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
246 |
+
|
247 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
248 |
+
if token in args.token_stop:
|
249 |
+
break
|
250 |
+
all_tokens += [token]
|
251 |
+
for xxx in occurrence:
|
252 |
+
occurrence[xxx] *= penalty_decay
|
253 |
+
if token not in occurrence:
|
254 |
+
occurrence[token] = 1
|
255 |
+
else:
|
256 |
+
occurrence[token] += 1
|
257 |
+
|
258 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
259 |
+
if '\ufffd' not in tmp:
|
260 |
+
out_str += tmp
|
261 |
+
yield out_str.strip()
|
262 |
+
out_last = i + 1
|
263 |
+
|
264 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
265 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
266 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
267 |
del out
|
268 |
del state
|
269 |
gc.collect()
|
|
|
277 |
[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
|
278 |
["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
|
279 |
['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
|
280 |
+
[generate_prompt("Write a simple webpage. When a user clicks the button, it shows a random joke from a list of 4 jokes."), 500, 1, 0.3, 0.5, 0.5],
|
281 |
['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境��は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
|
282 |
["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
|
283 |
["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
|
|
|
299 |
["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
300 |
["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
301 |
["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
302 |
+
["以 JSON 格式解释冰箱是如何工作的。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
303 |
["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
304 |
["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
305 |
]
|
306 |
|
307 |
+
examples_wyw = [
|
308 |
+
["我和前男友分手了", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
309 |
+
["量子计算机的原理", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
310 |
+
["李白和杜甫的结拜故事", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
311 |
+
["林黛玉和伏地魔的关系是什么?", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
312 |
+
["我被同事陷害了,帮我写一篇文言文骂他", gen_limit_long, 1, 0.2, 0.3, 0.3],
|
313 |
+
]
|
314 |
+
|
315 |
+
##########################################################################
|
316 |
+
|
317 |
+
with gr.Blocks(title=title) as demo:
|
318 |
+
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title}</h1>\n</div>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
with gr.Tab("=== Base Model (Raw Generation) ==="):
|
321 |
+
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) base model. Supports 100+ world languages and code. RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [400+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
|
322 |
with gr.Row():
|
323 |
with gr.Column():
|
324 |
+
prompt = gr.Textbox(lines=2, label="Raw Input", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.")
|
325 |
token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
|
326 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
|
327 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
|
|
332 |
submit = gr.Button("Submit", variant="primary")
|
333 |
clear = gr.Button("Clear", variant="secondary")
|
334 |
output = gr.Textbox(label="Output", lines=30)
|
335 |
+
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
336 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
337 |
clear.click(lambda: None, [], [output])
|
338 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
demo.queue(concurrency_count=1, max_size=10)
|
341 |
+
demo.launch(share=False)
|