LiamKhoaLe's picture
Update segm labelling
f214779
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui
# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* + KNN navigation ▸ H.264 video
# =======================================================================
import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles
# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
DetrImageProcessor, DetrForObjectDetection,
SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
from sklearn.neighbors import NearestNeighbors
# ── Folders / files ─────────────────────────────────────────────────────
BASE = "/home/user/app"
CACHE = f"{BASE}/cache"
UPLOAD_DIR = f"{CACHE}/uploads"
OUTPUT_DIR = f"{BASE}/outputs"
MODEL_DIR = f"{BASE}/model"
SPRITE = f"{BASE}/sprite.png"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"] = CACHE
# ── Load models once ───────────────────────────────────────────────────
print("🔄 Loading models …")
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
segformer = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
print("✅ Models ready\n")
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
[4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
[8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
[204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92],
[112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
[255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
[255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
[250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
[31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
[194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
[0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0],
[255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
[0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
[0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
[255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
[0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
[255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
[214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
[0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
[0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
[92, 0, 255]
], dtype=np.uint8)
custom_class_map = {
"Garbage": [(255, 8, 41), (235, 255, 7)],
"Water": [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255)],
"Grass / Vegetation": [(10, 255, 71), (143, 255, 140)],
"Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
"Sand / Soil / Ground": [(80, 50, 50), (230, 230, 230)],
"Buildings / Structures": [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
"Sky / Background": [(180, 120, 120)],
"Undetecable": [(0, 0, 0)],
"Unknown Class": []
}
TOL = 30 # RGB tolerance
# Segment class [150, 5, 61] is only detectable as garbage if it's large enough
def interpret_rgb_class(decoded_img):
ambiguous_rgb = np.array([150, 5, 61])
matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
match_ratio = np.count_nonzero(matches) / matches.size
return "garbage" if match_ratio > 0.15 else "sand"
# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
"""
Returns three binary masks at (H,W):
water_mask – 1 = water
garbage_mask – 1 = semantic “Garbage” pixels
movable_mask – union of water & garbage (robot can travel here)
"""
decoded = ade_palette[seg]
water_mask = np.zeros(seg.shape, np.uint8)
garbage_mask = np.zeros_like(water_mask)
# Resolve ambiguity: (150,5,61) → Sand or Garbage?
context_label = interpret_rgb_class(decoded)
resolved_map = custom_class_map.copy()
# Dynamically re-assign the ambiguous RGB class
if context_label == "garbage":
resolved_map["Garbage"].append((150, 5, 61))
resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
else: # Fall back as appointed to be sth else
resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
# Append water pixels to water_mask
for rgb in custom_class_map["Water"]:
water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
# Append gb pixels to garbage_mask
for rgb in custom_class_map["Garbage"]:
garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
movable_mask = water_mask | garbage_mask
return water_mask, garbage_mask, movable_mask
# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(frame, labels, objs, color_uncollected=(0, 0, 128), color_collected=(0, 128, 0), alpha=0.3):
"""
Overlays semi-transparent colored regions for garbage chunks on the frame.
`objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
"""
overlay = frame.copy()
for i, obj in enumerate(objs):
x, y = obj["pos"]
lab = labels[y, x]
if lab == 0:
continue
mask = (labels == lab).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
color = color_collected if obj["col"] else color_uncollected
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
# Blend overlay with original frame using alpha
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
"""
Overlays semi-transparent colored mask (binary) on the frame.
"""
overlay = frame.copy()
mask = binary_mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
h = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
N8 = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
openq=[(0,start)]; g={start:0}; came={}
while openq:
_,cur=heapq.heappop(openq)
if cur==goal:
p=[cur]; # reconstruct
while cur in came: cur=came[cur]; p.append(cur)
return p[::-1]
for dx,dy in N8:
nx,ny=cur[0]+dx,cur[1]+dy
if not (0<=nx<640 and 0<=ny<640): continue
if occ[ny,nx]==0: continue
ng=g[cur]+1
if (nx,ny) not in g or ng<g[(nx,ny)]:
g[(nx,ny)]=ng
f=ng+h((nx,ny),goal)
heapq.heappush(openq,(f,(nx,ny)))
came[(nx,ny)]=cur
return []
# KNN fit
def knn_path(start, targets, occ):
todo = targets[:]; path=[]
cur = tuple(start)
while todo:
nbrs = NearestNeighbors(n_neighbors=1).fit(todo)
_,idx = nbrs.kneighbors([cur]); nxt=tuple(todo[idx[0][0]])
seg = astar(cur, nxt, occ)
if seg:
if path and seg[0]==path[-1]: seg=seg[1:]
path.extend(seg)
cur = nxt; todo.remove(list(nxt))
return path
# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
img = Image.open(sprite).convert("RGBA").resize((40, 40))
self.png = np.array(img)
if self.png.shape[-1] != 4:
raise ValueError("Sprite image must have 4 channels (RGBA)")
self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
self.pos = [20,20]; self.speed=speed
def step(self, path):
while path:
dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
dist = (dx * dx + dy * dy) ** 0.5
if dist <= self.speed:
self.pos = list(path.pop(0))
else:
r = self.speed / dist
self.pos = [int(self.pos[0] + dx * r), int(self.pos[1] + dy * r)]
# Break after one logical move to avoid overshooting
break
# ── FastAPI & HTML content (original styling) ───────────────────────────
# HTML Content for UI (streamed with FastAPI HTML renderer)
HTML_CONTENT = """
<!DOCTYPE html>
<html>
<head>
<title>Sall-e Garbage Detection</title>
<link rel="website icon" type="png" href="/static/icon.png" >
<style>
body {
font-family: 'Roboto', sans-serif; background: linear-gradient(270deg, rgb(44, 13, 58), rgb(13, 58, 56)); color: white; text-align: center; margin: 0; padding: 50px;
}
h1 {
font-size: 40px;
background: linear-gradient(to right, #f32170, #ff6b08, #cf23cf, #eedd44);
-webkit-text-fill-color: transparent;
-webkit-background-clip: text;
font-weight: bold;
}
#upload-container {
background: rgba(255, 255, 255, 0.2); padding: 20px; width: 70%; border-radius: 10px; display: inline-block; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
}
#upload {
font-size: 18px; padding: 10px; border-radius: 5px; border: none; background: #fff; cursor: pointer;
}
#loader {
margin-top: 10px; margin-left: auto; margin-right: auto; width: 60px; height: 60px; font-size: 12px; text-align: center;
}
p {
margin-top: 10px; font-size: 12px; color: #3498db;
}
#spinner {
border: 8px solid #f3f3f3; border-top: 8px solid rgb(117 7 7); border-radius: 50%; animation: spin 1s linear infinite; width: 40px; height: 40px; margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#outputVideo {
margin-top: 20px; width: 70%; margin-left: auto; margin-right: auto; max-width: 640px; border-radius: 10px; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
}
#downloadBtn {
display: block; visibility: hidden; width: 20%; margin-top: 20px; margin-left: auto; margin-right: auto; padding: 10px 15px; font-size: 16px; background: #27ae60; color: white; border: none; border-radius: 5px; cursor: pointer; text-decoration: none;
}
#downloadBtn:hover {
background: #950606;
}
.hidden {
display: none;
}
@media (max-width: 860px) {
h1 { font-size: 30px; }
}
@media (max-width: 720px) {
h1 { font-size: 25px; }
#upload { font-size: 15px; }
#downloadBtn { font-size: 13px; }
}
@media (max-width: 580px) {
h1 { font-size: 20px; }
#upload { font-size: 10px; }
#downloadBtn { font-size: 10px; }
}
@media (max-width: 580px) {
h1 { font-size: 10px; }
}
@media (max-width: 460px) {
#upload { font-size: 7px; }
}
@media (max-width: 400px) {
h1 { font-size: 14px; }
}
@media (max-width: 370px) {
h1 { font-size: 11px; }
#upload { font-size: 5px; }
#downloadBtn { font-size: 7px; }
}
@media (max-width: 330px) {
h1 { font-size: 8px; }
#upload { font-size: 3px; }
#downloadBtn { font-size: 5px; }
}
</style>
</head>
<body>
<h1>Upload an Image for Garbage Detection</h1>
<div id="upload-container">
<input type="file" id="upload" accept="image/*">
</div>
<div id="loader" class="loader hidden">
<div id="spinner"></div>
<!-- <p>Garbage detection model processing...</p> -->
</div>
<video id="outputVideo" class="outputVideo" controls></video>
<a id="downloadBtn" class="downloadBtn">Download Video</a>
<script>
document.addEventListener("DOMContentLoaded", function() {
document.getElementById("outputVideo").classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "hidden";
});
document.getElementById('upload').addEventListener('change', async function(event) {
event.preventDefault();
const loader = document.getElementById("loader");
const outputVideo = document.getElementById("outputVideo");
const downloadBtn = document.getElementById("downloadBtn");
let file = event.target.files[0];
if (file) {
let formData = new FormData();
formData.append("file", file);
loader.classList.remove("hidden");
outputVideo.classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "hidden";
let response = await fetch('/upload/', { method: 'POST', body: formData });
let result = await response.json();
let user_id = result.user_id;
while (true) {
let checkResponse = await fetch(`/check_video/${user_id}`);
let checkResult = await checkResponse.json();
if (checkResult.ready) break;
await new Promise(resolve => setTimeout(resolve, 3000)); // Wait 3s before checking again
}
loader.classList.add("hidden");
let videoUrl = `/video/${user_id}?t=${new Date().getTime()}`;
outputVideo.src = videoUrl;
outputVideo.load();
outputVideo.play();
outputVideo.setAttribute("crossOrigin", "anonymous");
outputVideo.classList.remove("hidden");
downloadBtn.href = videoUrl;
document.getElementById("downloadBtn").style.visibility = "visible";
}
});
document.getElementById('outputVideo').addEventListener('error', function() {
console.log("⚠️ Video could not be played, showing download button instead.");
document.getElementById('outputVideo').classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "visible";
});
</script>
</body>
</html>
"""
# ── Static-web ──────────────────────────────────────────────────────────
app = FastAPI()
app.mount("/static", StaticFiles(directory=BASE), name="static")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
def ui(): return HTML_CONTENT
def _uid(): return uuid.uuid4().hex[:8]
# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
threading.Thread(target=_pipeline, args=(uid,dest)).start()
return {"user_id":uid}
# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}
# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
vid=f"{OUTPUT_DIR}/{uid}.mp4"
if not os.path.exists(vid): return Response(status_code=404)
return StreamingResponse(open(vid,"rb"), media_type="video/mp4")
# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
print(f"▶️ [{uid}] processing")
bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
pil=Image.fromarray(rgb)
# 1- Segmentation → masking each segmented zone with pytorch
with torch.no_grad():
inputs = feat_extractor(pil, return_tensors="pt")
seg_logits = segformer(**inputs).logits
# Tensor run by CPU
seg_tensor = seg_logits.argmax(1)[0].cpu()
if seg_tensor.numel() == 0:
print(f"❌ [{uid}] segmentation failed (empty tensor)")
video_ready[uid] = True
return
# Resize the tensor to 640x640
seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks
# 2- Garbage detection (3 models) → keep centres on water
detections=[]
# Detect garbage chunks (from segmentation)
num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
chunk_centres = []
for lab in range(1, num_cc):
ys, xs = np.where(labels == lab)
if xs.size == 0: # safety
continue
chunk_centres.append([int(xs.mean()), int(ys.mean())])
print(f"🧠 {len(chunk_centres)} garbage chunk detected")
# Detect garbage object by within travelable zones
for r in model_self(bgr): # YOLOv11 (self-trained)
detections += [b.xyxy[0].tolist() for b in r.boxes]
r = model_yolo5(bgr) # YOLOv5
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
inp=processor_detr(images=pil,return_tensors="pt")
with torch.no_grad(): out=model_detr(**inp) # DETR
post = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in post["boxes"]]
# centre & mask filter (the garbage lies within travelable zone are collectable)
centres = []
for x1, y1, x2, y2 in detections: # Define IoU heuristic
'''
We conduct a 20% allowance whether the center
of the detected garbage's bbox lies within the travelable zone
which was segmented earlier to be the water and garbage zone
'''
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
box_mask = movable_mask[y1:y2, x1:x2] # ← use MOVABLE mask
if box_mask.size == 0:
continue
if np.count_nonzero(box_mask) / box_mask.size >= 0.2:
centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
# add chunk centres and deduplicate
centres.extend(chunk_centres)
centres = [list(c) for c in {tuple(c) for c in centres}]
if not centres: # No garbages within travelable zone
print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
else: # Garbage within valid travelable zone
print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")
# 3- Global route
robot = Robot(SPRITE)
path = knn_path(robot.pos, centres, movable_mask)
# 4- Video synthesis
out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
objs=[{"pos":p,"col":False} for p in centres]
bg = bgr.copy()
for _ in range(15000): # safety frames
frame=bg.copy()
# Draw garbage chunk masks in red-to-green (semi-transparent)
frame = highlight_chunk_masks_on_frame(frame, labels, objs) # 🔴 garbage overlay
frame = highlight_water_mask_on_frame(frame, water_mask) # 🔵 water overlay
# Draw object detections as red (to green) dots
for o in objs:
color = (0, 0, 128) if not o["col"] else (0, 128, 0)
x, y = o["pos"]
cv2.circle(frame, (x, y), 6, color, -1)
# Robot displacement
robot.step(path)
sp = robot.png
sprite_h, sprite_w = sp.shape[:2]
rx, ry = robot.pos
x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
x2, y2 = x1 + sprite_w, y1 + sprite_h
# Clip boundaries to image size
x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
# Adjust sprite crop accordingly
sx1, sy1 = x1_clip - x1, y1_clip - y1
sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
sprite_crop = sp[sy1:sy2, sx1:sx2]
alpha = sprite_crop[:, :, 3] / 255.0
alpha = np.stack([alpha] * 3, axis=-1)
bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
# collection check
for o in objs:
if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
o["col"]=True
vw.write(frame)
if all(o["col"] for o in objs): break
if not path: break
vw.release()
# 5- Convert to H.264
final=f"{OUTPUT_DIR}/{uid}.mp4"
ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
os.remove(out_tmp); video_ready[uid]=True
print(f"✅ [{uid}] video ready → {final}")
# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
uvicorn.run(app,host="0.0.0.0",port=7860)