Spaces:
Runtime error
Runtime error
""" CODE TO TRY IN COLAB | |
!pip install -q transformers datasets torch gradio console_logging numpy | |
import gradio as gr | |
import torch | |
from datasets import load_dataset | |
from console_logging.console import Console | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from transformers import TrainingArguments, Trainer | |
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score | |
from transformers import EvalPrediction | |
import torch | |
console = Console() | |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", ) | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
#labels = [label for label in dataset['train'].features.keys() if label not in ['text']] | |
labels = ["Bearish", "Bullish", "Neutral"] | |
def preprocess_data(examples): | |
# take a batch of texts | |
text = examples["text"] | |
# encode them | |
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128) | |
# add labels | |
#labels_batch = {k: examples[k] for k in examples.keys() if k in labels} | |
labels_batch = {'Bearish': [], 'Bullish': [], 'Neutral': []} | |
for i in range (len(examples['label'])): | |
labels_batch["Bearish"].append(False) | |
labels_batch["Bullish"].append(False) | |
labels_batch["Neutral"].append(False) | |
if examples['label'][i] == 0: | |
labels_batch["Bearish"][i] = True | |
elif examples['label'][i] == 1: | |
labels_batch["Bullish"][i] = True | |
else: | |
labels_batch["Neutral"][i] = True | |
# create numpy array of shape (batch_size, num_labels) | |
labels_matrix = np.zeros((len(text), len(labels))) | |
# fill numpy array | |
for idx, label in enumerate(labels): | |
labels_matrix[:, idx] = labels_batch[label] | |
encoding["labels"] = labels_matrix.tolist() | |
return encoding | |
encoded_dataset = dataset.map(preprocess_data, batched=True, remove_columns=dataset['train'].column_names) | |
encoded_dataset.set_format("torch") | |
id2label = {idx:label for idx, label in enumerate(labels)} | |
label2id = {label:idx for idx, label in enumerate(labels)} | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", | |
problem_type="multi_label_classification", | |
num_labels=len(labels), | |
id2label=id2label, | |
label2id=label2id) | |
batch_size = 8 | |
metric_name = "f1" | |
args = TrainingArguments( | |
f"bert-finetuned-sem_eval-english", | |
evaluation_strategy = "epoch", | |
save_strategy = "epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=batch_size, | |
per_device_eval_batch_size=batch_size, | |
num_train_epochs=5, | |
weight_decay=0.01, | |
load_best_model_at_end=True, | |
metric_for_best_model=metric_name, | |
#push_to_hub=True, | |
) | |
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/ | |
def multi_label_metrics(predictions, labels, threshold=0.5): | |
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels) | |
sigmoid = torch.nn.Sigmoid() | |
probs = sigmoid(torch.Tensor(predictions)) | |
# next, use threshold to turn them into integer predictions | |
y_pred = np.zeros(probs.shape) | |
y_pred[np.where(probs >= threshold)] = 1 | |
# finally, compute metrics | |
y_true = labels | |
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro') | |
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro') | |
accuracy = accuracy_score(y_true, y_pred) | |
# return as dictionary | |
metrics = {'f1': f1_micro_average, | |
'roc_auc': roc_auc, | |
'accuracy': accuracy} | |
return metrics | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance(p.predictions, | |
tuple) else p.predictions | |
result = multi_label_metrics( | |
predictions=preds, | |
labels=p.label_ids) | |
return result | |
trainer = Trainer( | |
model, | |
args, | |
train_dataset=encoded_dataset["train"], | |
eval_dataset=encoded_dataset["validation"], | |
tokenizer=tokenizer, | |
compute_metrics=compute_metrics | |
) | |
trainer.train() | |
trainer.evaluate() | |
""" | |
# Version to gradio and HuggingFace, doesn't works like the colab version, this version use the exported model, possible without the fine tuning | |
import torch | |
from datasets import load_dataset | |
from console_logging.console import Console | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from transformers import TrainingArguments, Trainer | |
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score | |
from transformers import EvalPrediction | |
import torch | |
import gradio as gr | |
console = Console() | |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", ) | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
#labels = [label for label in dataset['train'].features.keys() if label not in ['text']] | |
labels = ["Bearish", "Bullish", "Neutral"] | |
def preprocess_data(examples): | |
# take a batch of texts | |
text = examples["text"] | |
# encode them | |
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128) | |
# add labels | |
#labels_batch = {k: examples[k] for k in examples.keys() if k in labels} | |
labels_batch = {'Bearish': [], 'Bullish': [], 'Neutral': []} | |
for i in range (len(examples['label'])): | |
labels_batch["Bearish"].append(False) | |
labels_batch["Bullish"].append(False) | |
labels_batch["Neutral"].append(False) | |
if examples['label'][i] == 0: | |
labels_batch["Bearish"][i] = True | |
elif examples['label'][i] == 1: | |
labels_batch["Bullish"][i] = True | |
else: | |
labels_batch["Neutral"][i] = True | |
# create numpy array of shape (batch_size, num_labels) | |
labels_matrix = np.zeros((len(text), len(labels))) | |
# fill numpy array | |
for idx, label in enumerate(labels): | |
labels_matrix[:, idx] = labels_batch[label] | |
encoding["labels"] = labels_matrix.tolist() | |
return encoding | |
encoded_dataset = dataset.map(preprocess_data, batched=True, remove_columns=dataset['train'].column_names) | |
encoded_dataset.set_format("torch") | |
id2label = {idx:label for idx, label in enumerate(labels)} | |
label2id = {label:idx for idx, label in enumerate(labels)} | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", | |
problem_type="multi_label_classification", | |
num_labels=len(labels), | |
id2label=id2label, | |
label2id=label2id) | |
batch_size = 8 | |
metric_name = "f1" | |
args = TrainingArguments( | |
f"bert-finetuned-sem_eval-english", | |
evaluation_strategy = "epoch", | |
save_strategy = "epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=batch_size, | |
per_device_eval_batch_size=batch_size, | |
num_train_epochs=5, | |
weight_decay=0.01, | |
load_best_model_at_end=True, | |
metric_for_best_model=metric_name, | |
#push_to_hub=True, | |
) | |
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/ | |
def multi_label_metrics(predictions, labels, threshold=0.5): | |
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels) | |
sigmoid = torch.nn.Sigmoid() | |
probs = sigmoid(torch.Tensor(predictions)) | |
# next, use threshold to turn them into integer predictions | |
y_pred = np.zeros(probs.shape) | |
y_pred[np.where(probs >= threshold)] = 1 | |
# finally, compute metrics | |
y_true = labels | |
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro') | |
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro') | |
accuracy = accuracy_score(y_true, y_pred) | |
# return as dictionary | |
metrics = {'f1': f1_micro_average, | |
'roc_auc': roc_auc, | |
'accuracy': accuracy} | |
return metrics | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance(p.predictions, | |
tuple) else p.predictions | |
result = multi_label_metrics( | |
predictions=preds, | |
labels=p.label_ids) | |
return result | |
text_ = "Bitcoin to the moon" | |
model = torch.load("./model.pt", map_location=torch.device('cpu')) | |
trainer = Trainer( | |
model, | |
args, | |
train_dataset=encoded_dataset["train"], | |
eval_dataset=encoded_dataset["validation"], | |
tokenizer=tokenizer, | |
compute_metrics=compute_metrics | |
) | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def predict(text): | |
encoding = tokenizer(text, return_tensors="pt") | |
encoding = {k: v.to(trainer.model.device) for k,v in encoding.items()} | |
outputs = trainer.model(**encoding) | |
logits = outputs.logits | |
logits.shape | |
# apply sigmoid + threshold | |
sigmoid = torch.nn.Sigmoid() | |
probs = sigmoid(logits.squeeze().cpu()) | |
predictions = np.zeros(probs.shape) | |
predictions[np.where(probs >= 0.5)] = 1 | |
# turn predicted id's into actual label names | |
return([id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]) | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
# Sentiment text!!! | |
""") | |
inp = [gr.Textbox(label='Text or tweet text', placeholder="Insert text")] | |
out = gr.Textbox(label='Output') | |
text_button = gr.Button("Get the text sentiment") | |
text_button.click(predict, inputs=inp, outputs=out) | |
demo.launch() | |
############### | |
trainer.train() | |
trainer.evaluate() | |