Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
from console_logging.console import Console
|
|
@@ -9,8 +11,6 @@ from transformers import TrainingArguments, Trainer
|
|
| 9 |
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
|
| 10 |
from transformers import EvalPrediction
|
| 11 |
import torch
|
| 12 |
-
import gradio as gr
|
| 13 |
-
|
| 14 |
console = Console()
|
| 15 |
|
| 16 |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
|
|
@@ -112,7 +112,8 @@ def compute_metrics(p: EvalPrediction):
|
|
| 112 |
labels=p.label_ids)
|
| 113 |
return result
|
| 114 |
|
| 115 |
-
|
|
|
|
| 116 |
model,
|
| 117 |
args,
|
| 118 |
train_dataset=encoded_dataset["train"],
|
|
@@ -120,9 +121,126 @@ def compute_metrics(p: EvalPrediction):
|
|
| 120 |
tokenizer=tokenizer,
|
| 121 |
compute_metrics=compute_metrics
|
| 122 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
"""
|
| 124 |
|
| 125 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
text_ = "Bitcoin to the moon"
|
| 128 |
model = torch.load("./model.pt", map_location=torch.device('cpu'))
|
|
@@ -168,7 +286,7 @@ with demo:
|
|
| 168 |
""")
|
| 169 |
inp = [gr.Textbox(label='Text or tweet text', placeholder="Insert text")]
|
| 170 |
out = gr.Textbox(label='Output')
|
| 171 |
-
text_button = gr.Button("
|
| 172 |
text_button.click(predict, inputs=inp, outputs=out)
|
| 173 |
|
| 174 |
|
|
|
|
| 1 |
+
""" CODE TO TRY IN COLAB
|
| 2 |
+
!pip install -q transformers datasets torch gradio console_logging numpy
|
| 3 |
|
| 4 |
+
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from datasets import load_dataset
|
| 7 |
from console_logging.console import Console
|
|
|
|
| 11 |
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
|
| 12 |
from transformers import EvalPrediction
|
| 13 |
import torch
|
|
|
|
|
|
|
| 14 |
console = Console()
|
| 15 |
|
| 16 |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
|
|
|
|
| 112 |
labels=p.label_ids)
|
| 113 |
return result
|
| 114 |
|
| 115 |
+
|
| 116 |
+
trainer = Trainer(
|
| 117 |
model,
|
| 118 |
args,
|
| 119 |
train_dataset=encoded_dataset["train"],
|
|
|
|
| 121 |
tokenizer=tokenizer,
|
| 122 |
compute_metrics=compute_metrics
|
| 123 |
)
|
| 124 |
+
|
| 125 |
+
trainer.train()
|
| 126 |
+
|
| 127 |
+
trainer.evaluate()
|
| 128 |
"""
|
| 129 |
|
| 130 |
+
# Version to gradio and HuggingFace, doesn't works like the colab version, this version use the exported model, possible without the fine tuning
|
| 131 |
+
|
| 132 |
+
import torch
|
| 133 |
+
from datasets import load_dataset
|
| 134 |
+
from console_logging.console import Console
|
| 135 |
+
import numpy as np
|
| 136 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 137 |
+
from transformers import TrainingArguments, Trainer
|
| 138 |
+
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
|
| 139 |
+
from transformers import EvalPrediction
|
| 140 |
+
import torch
|
| 141 |
+
import gradio as gr
|
| 142 |
+
|
| 143 |
+
console = Console()
|
| 144 |
+
|
| 145 |
+
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
| 149 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 150 |
+
|
| 151 |
+
#labels = [label for label in dataset['train'].features.keys() if label not in ['text']]
|
| 152 |
+
|
| 153 |
+
labels = ["Bearish", "Bullish", "Neutral"]
|
| 154 |
+
|
| 155 |
+
def preprocess_data(examples):
|
| 156 |
+
# take a batch of texts
|
| 157 |
+
text = examples["text"]
|
| 158 |
+
# encode them
|
| 159 |
+
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128)
|
| 160 |
+
# add labels
|
| 161 |
+
#labels_batch = {k: examples[k] for k in examples.keys() if k in labels}
|
| 162 |
+
labels_batch = {'Bearish': [], 'Bullish': [], 'Neutral': []}
|
| 163 |
+
for i in range (len(examples['label'])):
|
| 164 |
+
labels_batch["Bearish"].append(False)
|
| 165 |
+
labels_batch["Bullish"].append(False)
|
| 166 |
+
labels_batch["Neutral"].append(False)
|
| 167 |
+
|
| 168 |
+
if examples['label'][i] == 0:
|
| 169 |
+
labels_batch["Bearish"][i] = True
|
| 170 |
+
|
| 171 |
+
elif examples['label'][i] == 1:
|
| 172 |
+
labels_batch["Bullish"][i] = True
|
| 173 |
+
|
| 174 |
+
else:
|
| 175 |
+
labels_batch["Neutral"][i] = True
|
| 176 |
+
|
| 177 |
+
# create numpy array of shape (batch_size, num_labels)
|
| 178 |
+
labels_matrix = np.zeros((len(text), len(labels)))
|
| 179 |
+
# fill numpy array
|
| 180 |
+
for idx, label in enumerate(labels):
|
| 181 |
+
labels_matrix[:, idx] = labels_batch[label]
|
| 182 |
+
|
| 183 |
+
encoding["labels"] = labels_matrix.tolist()
|
| 184 |
+
|
| 185 |
+
return encoding
|
| 186 |
+
|
| 187 |
+
encoded_dataset = dataset.map(preprocess_data, batched=True, remove_columns=dataset['train'].column_names)
|
| 188 |
+
|
| 189 |
+
encoded_dataset.set_format("torch")
|
| 190 |
+
|
| 191 |
+
id2label = {idx:label for idx, label in enumerate(labels)}
|
| 192 |
+
label2id = {label:idx for idx, label in enumerate(labels)}
|
| 193 |
+
|
| 194 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased",
|
| 195 |
+
problem_type="multi_label_classification",
|
| 196 |
+
num_labels=len(labels),
|
| 197 |
+
id2label=id2label,
|
| 198 |
+
label2id=label2id)
|
| 199 |
+
|
| 200 |
+
batch_size = 8
|
| 201 |
+
metric_name = "f1"
|
| 202 |
+
|
| 203 |
+
args = TrainingArguments(
|
| 204 |
+
f"bert-finetuned-sem_eval-english",
|
| 205 |
+
evaluation_strategy = "epoch",
|
| 206 |
+
save_strategy = "epoch",
|
| 207 |
+
learning_rate=2e-5,
|
| 208 |
+
per_device_train_batch_size=batch_size,
|
| 209 |
+
per_device_eval_batch_size=batch_size,
|
| 210 |
+
num_train_epochs=5,
|
| 211 |
+
weight_decay=0.01,
|
| 212 |
+
load_best_model_at_end=True,
|
| 213 |
+
metric_for_best_model=metric_name,
|
| 214 |
+
#push_to_hub=True,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/
|
| 218 |
+
def multi_label_metrics(predictions, labels, threshold=0.5):
|
| 219 |
+
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels)
|
| 220 |
+
sigmoid = torch.nn.Sigmoid()
|
| 221 |
+
probs = sigmoid(torch.Tensor(predictions))
|
| 222 |
+
# next, use threshold to turn them into integer predictions
|
| 223 |
+
y_pred = np.zeros(probs.shape)
|
| 224 |
+
y_pred[np.where(probs >= threshold)] = 1
|
| 225 |
+
# finally, compute metrics
|
| 226 |
+
y_true = labels
|
| 227 |
+
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro')
|
| 228 |
+
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro')
|
| 229 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 230 |
+
# return as dictionary
|
| 231 |
+
metrics = {'f1': f1_micro_average,
|
| 232 |
+
'roc_auc': roc_auc,
|
| 233 |
+
'accuracy': accuracy}
|
| 234 |
+
return metrics
|
| 235 |
+
|
| 236 |
+
def compute_metrics(p: EvalPrediction):
|
| 237 |
+
preds = p.predictions[0] if isinstance(p.predictions,
|
| 238 |
+
tuple) else p.predictions
|
| 239 |
+
result = multi_label_metrics(
|
| 240 |
+
predictions=preds,
|
| 241 |
+
labels=p.label_ids)
|
| 242 |
+
return result
|
| 243 |
+
|
| 244 |
|
| 245 |
text_ = "Bitcoin to the moon"
|
| 246 |
model = torch.load("./model.pt", map_location=torch.device('cpu'))
|
|
|
|
| 286 |
""")
|
| 287 |
inp = [gr.Textbox(label='Text or tweet text', placeholder="Insert text")]
|
| 288 |
out = gr.Textbox(label='Output')
|
| 289 |
+
text_button = gr.Button("Get the text sentiment")
|
| 290 |
text_button.click(predict, inputs=inp, outputs=out)
|
| 291 |
|
| 292 |
|