fffiloni's picture
Update app.py
bd2388a verified
raw
history blame
7.73 kB
import gradio as gr
from gradio_client import Client
import os
import json
import re
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip
import cv2
hf_token = os.environ.get("HF_TKN")
def extract_firstframe():
vidcap = cv2.VideoCapture('yourvideo.mp4') # replace yourvideo.mp4 with actual filename of your video
success,image = vidcap.read()
count = 0
while success:
if count == 0:
cv2.imwrite("first_frame.jpg", image) # save first extracted frame as jpg file named first_frame.jpg
else:
break # exit loop after saving first frame
success,image = vidcap.read()
print ('Read a new frame: ', success)
count += 1
print ("Done extracted first frame!")
return "first_frame.jpg"
def extract_audio(video_in):
input_video = video_in
output_audio = 'audio.wav'
# Open the video file and extract the audio
video_clip = VideoFileClip(input_video)
audio_clip = video_clip.audio
# Save the audio as a .wav file
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
print("Audio extraction complete.")
return 'audio.wav'
def get_caption_from_kosmos(image_in):
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
kosmos2_result = kosmos2_client.predict(
image_in, # str (filepath or URL to image) in 'Test Image' Image component
"Detailed", # str in 'Description Type' Radio component
fn_index=4
)
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
with open(kosmos2_result[1], 'r') as f:
data = json.load(f)
reconstructed_sentence = []
for sublist in data:
reconstructed_sentence.append(sublist[0])
full_sentence = ' '.join(reconstructed_sentence)
#print(full_sentence)
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
pattern = r'^Describe this image in detail:\s*(.*)$'
# Apply the regex pattern to extract the description text.
match = re.search(pattern, full_sentence)
if match:
description = match.group(1)
print(description)
else:
print("Unable to locate valid description.")
# Find the last occurrence of "."
last_period_index = description.rfind('.')
# Truncate the string up to the last period
truncated_caption = description[:last_period_index + 1]
# print(truncated_caption)
print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
return truncated_caption
def get_caption(image_in):
client = Client("https://fffiloni-moondream1.hf.space/", hf_token=hf_token)
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe precisely the image in one sentence.", # str in 'Question' Textbox component
#api_name="/answer_question"
api_name="/predict"
)
print(result)
return result
def get_magnet(prompt):
amended_prompt = f"{prompt}"
print(amended_prompt)
client = Client("https://fffiloni-magnet.hf.space/")
result = client.predict(
"facebook/audio-magnet-medium", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
"", # str in 'Model Path (custom models)' Textbox component
amended_prompt, # str in 'Input Text' Textbox component
3, # float in 'Temperature' Number component
0.9, # float in 'Top-p' Number component
10, # float in 'Max CFG coefficient' Number component
1, # float in 'Min CFG coefficient' Number component
20, # float in 'Decoding Steps (stage 1)' Number component
10, # float in 'Decoding Steps (stage 2)' Number component
10, # float in 'Decoding Steps (stage 3)' Number component
10, # float in 'Decoding Steps (stage 4)' Number component
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
api_name="/predict_full"
)
print(result)
return result[1]
def get_audioldm(prompt):
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
result = client.predict(
prompt, # str in 'Input text' Textbox component
"Low quality. Music.", # str in 'Negative prompt' Textbox component
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
3.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
45, # int | float in 'Seed' Number component
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
fn_index=1
)
print(result)
audio_result = extract_audio(result)
return audio_result
def get_audiogen(prompt):
client = Client("https://fffiloni-audiogen.hf.space/")
result = client.predict(
prompt,
10,
api_name="/infer"
)
return result
def get_tango(prompt):
try:
client = Client("https://declare-lab-tango.hf.space/")
except:
raise gr.Error("Tango space API is not ready, please try again in few minutes ")
result = client.predict(
prompt, # str representing string value in 'Prompt' Textbox component
100, # int | float representing numeric value between 100 and 200 in 'Steps' Slider component
4, # int | float representing numeric value between 1 and 10 in 'Guidance Scale' Slider component
api_name="/predict"
)
print(result)
return result
def blend_vsfx(video_in, audio_result):
audioClip = AudioFileClip(audio_result)
clip = VideoFileClip(video_in)
final_clip = clip.set_audio(audioClip)
final_clip.write_videofile('final_video_with_sound.mp4')
return "final_video_with_sound.mp4"
def infer(video_in, chosen_model):
image_in = extract_firstframe(video_in)
caption = get_caption(image_in)
if chosen_model == "MAGNet" :
audio_result = get_magnet(caption)
elif chosen_model == "AudioLDM-2" :
audio_result = get_audioldm(caption)
elif chosen_model == "AudioGen" :
audio_result = get_audiogen(caption)
elif chosen_model == "Tango" :
audio_result = get_tango(caption)
final_res = blend_vsfx(video_in, audio_result)
return audio_result, final_res
css="""
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">
Video to SoundFX
</h2>
<p style="text-align: center;">
Get sound effectsfor from video while comparing models from image caption.
</p>
""")
with gr.Row():
with gr.Column():
video_in = gr.Video(sources=["upload"], label="Video input")
with gr.Row():
chosen_model = gr.Dropdown(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen", "Tango"], value="AudioLDM-2")
submit_btn = gr.Button("Submit")
with gr.Column():
audio_o = gr.Audio(label="Audio output")
video_o = gr.Video(label="Video with soundFX")
submit_btn.click(
fn=infer,
inputs=[video_in_in, chosen_model],
outputs=[audio_o, video_o],
concurrency_limit = 2
)
demo.queue(max_size=10).launch(debug=True, show_error=True)