|
import torch |
|
import transformers |
|
from transformers import RagRetriever, RagSequenceForGeneration, AutoModelForCausalLM, pipeline |
|
import gradio as gr |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
dataset_path = "./5k_index_data/my_knowledge_dataset" |
|
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss" |
|
|
|
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", |
|
passages_path = dataset_path, |
|
index_path = index_path, |
|
n_docs = 5) |
|
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) |
|
rag_model.retriever.init_retrieval() |
|
rag_model.to(device) |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model="google/gemma-2-2b-it", |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device=device, |
|
) |
|
|
|
def strip_title(title): |
|
if title.startswith('"'): |
|
title = title[1:] |
|
if title.endswith('"'): |
|
title = title[:-1] |
|
|
|
return title |
|
|
|
|
|
def retrieved_info(query, rag_model = rag_model): |
|
|
|
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( |
|
[query], |
|
return_tensors = 'pt', |
|
padding = True, |
|
truncation = True, |
|
)['input_ids'].to(device) |
|
|
|
|
|
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids) |
|
question_encoder_pool_output = question_encoder_output[0] |
|
|
|
result = rag_model.retriever( |
|
retriever_input_ids, |
|
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(), |
|
prefix = rag_model.rag.generator.config.prefix, |
|
n_docs = rag_model.config.n_docs, |
|
return_tensors = 'pt', |
|
) |
|
|
|
|
|
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) |
|
retrieved_context = [] |
|
for docs in all_docs: |
|
titles = [strip_title(title) for title in docs['title']] |
|
texts = docs['text'] |
|
for title, text in zip(titles, texts): |
|
retrieved_context.append(f'{title}: {text}') |
|
|
|
|
|
|
|
|
|
messages = [ |
|
{"role": "user", "content": f"{query}"}, |
|
{"role": "system" , "content": f"Context: {retrieved_context}. Use the links and information from the Context to answer the query in brief. Provide links in the answer."} |
|
] |
|
|
|
outputs = pipe(messages, max_new_tokens=256) |
|
assistant_response = outputs[0]["generated_text"][-1]["content"].strip() |
|
|
|
return assistant_response |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens , |
|
temperature, |
|
top_p, |
|
): |
|
if message: |
|
response = retrieved_info(message) |
|
return response |
|
|
|
|
|
return "" |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
|
|
title = "🧠 Welcome to Your AI Knowledge Assistant" |
|
description = """ |
|
HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you. |
|
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN...... |
|
""" |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
type = 'messages', |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
title=title, |
|
description=description, |
|
submit_btn = True, |
|
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]), |
|
examples=[["Future of AI"], ["App Development"]], |
|
theme="compact", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share = True ) |
|
|