Rename app.py to app_RAG.py
Browse files- app.py +0 -422
- app_RAG.py +129 -0
app.py
DELETED
@@ -1,422 +0,0 @@
|
|
1 |
-
# import torch
|
2 |
-
# import transformers
|
3 |
-
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
4 |
-
# import gradio as gr
|
5 |
-
|
6 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
-
|
8 |
-
|
9 |
-
# dataset_path = "./5k_index_data/my_knowledge_dataset"
|
10 |
-
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
11 |
-
|
12 |
-
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
13 |
-
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
14 |
-
# passages_path = dataset_path,
|
15 |
-
# index_path = index_path,
|
16 |
-
# n_docs = 5)
|
17 |
-
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
18 |
-
# rag_model.retriever.init_retrieval()
|
19 |
-
# rag_model.to(device)
|
20 |
-
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
|
21 |
-
# device_map = 'auto',
|
22 |
-
# torch_dtype = torch.bfloat16,
|
23 |
-
# )
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# def strip_title(title):
|
28 |
-
# if title.startswith('"'):
|
29 |
-
# title = title[1:]
|
30 |
-
# if title.endswith('"'):
|
31 |
-
# title = title[:-1]
|
32 |
-
|
33 |
-
# return title
|
34 |
-
|
35 |
-
# # getting the correct format to input in gemma model
|
36 |
-
# def input_format(query, context):
|
37 |
-
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
|
38 |
-
# message = f'Question: {query}'
|
39 |
-
|
40 |
-
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
|
41 |
-
|
42 |
-
# # retrieving and generating answer in one call
|
43 |
-
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
44 |
-
# # Tokenize Query
|
45 |
-
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
46 |
-
# [query],
|
47 |
-
# return_tensors = 'pt',
|
48 |
-
# padding = True,
|
49 |
-
# truncation = True,
|
50 |
-
# )['input_ids'].to(device)
|
51 |
-
|
52 |
-
# # Retrieve Documents
|
53 |
-
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
54 |
-
# question_encoder_pool_output = question_encoder_output[0]
|
55 |
-
|
56 |
-
# result = rag_model.retriever(
|
57 |
-
# retriever_input_ids,
|
58 |
-
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
59 |
-
# prefix = rag_model.rag.generator.config.prefix,
|
60 |
-
# n_docs = rag_model.config.n_docs,
|
61 |
-
# return_tensors = 'pt',
|
62 |
-
# )
|
63 |
-
|
64 |
-
# # Preparing query and retrieved docs for model
|
65 |
-
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
66 |
-
# retrieved_context = []
|
67 |
-
# for docs in all_docs:
|
68 |
-
# titles = [strip_title(title) for title in docs['title']]
|
69 |
-
# texts = docs['text']
|
70 |
-
# for title, text in zip(titles, texts):
|
71 |
-
# retrieved_context.append(f'{title}: {text}')
|
72 |
-
|
73 |
-
# generation_model_input = input_format(query, retrieved_context)
|
74 |
-
|
75 |
-
# # Generating answer using gemma model
|
76 |
-
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
77 |
-
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
|
78 |
-
# output = generating_model.generate(input_ids, max_new_tokens = 256)
|
79 |
-
|
80 |
-
# return tokenizer.decode(output[0])
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# def respond(
|
88 |
-
# message,
|
89 |
-
# history: list[tuple[str, str]],
|
90 |
-
# system_message,
|
91 |
-
# max_tokens ,
|
92 |
-
# temperature,
|
93 |
-
# top_p,
|
94 |
-
# ):
|
95 |
-
# if message: # If there's a user query
|
96 |
-
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
|
97 |
-
# return response
|
98 |
-
|
99 |
-
# # In case no message, return an empty string
|
100 |
-
# return ""
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# """
|
105 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
106 |
-
# """
|
107 |
-
# # Custom title and description
|
108 |
-
# title = "🧠 Welcome to Your AI Knowledge Assistant"
|
109 |
-
# description = """
|
110 |
-
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
|
111 |
-
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
112 |
-
# """
|
113 |
-
|
114 |
-
# demo = gr.ChatInterface(
|
115 |
-
# respond,
|
116 |
-
# type = 'messages',
|
117 |
-
# additional_inputs=[
|
118 |
-
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
119 |
-
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
120 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
121 |
-
# gr.Slider(
|
122 |
-
# minimum=0.1,
|
123 |
-
# maximum=1.0,
|
124 |
-
# value=0.95,
|
125 |
-
# step=0.05,
|
126 |
-
# label="Top-p (nucleus sampling)",
|
127 |
-
# ),
|
128 |
-
# ],
|
129 |
-
# title=title,
|
130 |
-
# description=description,
|
131 |
-
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
132 |
-
# examples=[["✨Future of AI"], ["📱App Development"]],
|
133 |
-
# example_icons=["🤖", "📱"],
|
134 |
-
# theme="compact",
|
135 |
-
# submit_btn = True,
|
136 |
-
# )
|
137 |
-
|
138 |
-
|
139 |
-
# if __name__ == "__main__":
|
140 |
-
# demo.launch(share = True )
|
141 |
-
|
142 |
-
# import torch
|
143 |
-
# import transformers
|
144 |
-
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
145 |
-
# import gradio as gr
|
146 |
-
|
147 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
148 |
-
|
149 |
-
|
150 |
-
# dataset_path = "./5k_index_data/my_knowledge_dataset"
|
151 |
-
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
152 |
-
|
153 |
-
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
154 |
-
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
155 |
-
# passages_path = dataset_path,
|
156 |
-
# index_path = index_path,
|
157 |
-
# n_docs = 5)
|
158 |
-
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
159 |
-
# rag_model.retriever.init_retrieval()
|
160 |
-
# rag_model.to(device)
|
161 |
-
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
|
162 |
-
# device_map = 'auto',
|
163 |
-
# torch_dtype = torch.bfloat16,
|
164 |
-
# )
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
# def strip_title(title):
|
169 |
-
# if title.startswith('"'):
|
170 |
-
# title = title[1:]
|
171 |
-
# if title.endswith('"'):
|
172 |
-
# title = title[:-1]
|
173 |
-
|
174 |
-
# return title
|
175 |
-
|
176 |
-
# # getting the correct format to input in gemma model
|
177 |
-
# def input_format(query, context):
|
178 |
-
# # sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
|
179 |
-
# # message = f'Question: {query}'
|
180 |
-
|
181 |
-
# # return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
|
182 |
-
# return [
|
183 |
-
# {
|
184 |
-
# "role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' },
|
185 |
-
|
186 |
-
# {
|
187 |
-
# "role": "user", "content": f"{query}"},
|
188 |
-
# ]
|
189 |
-
|
190 |
-
# # retrieving and generating answer in one call
|
191 |
-
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
192 |
-
# # Tokenize Query
|
193 |
-
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
194 |
-
# [query],
|
195 |
-
# return_tensors = 'pt',
|
196 |
-
# padding = True,
|
197 |
-
# truncation = True,
|
198 |
-
# )['input_ids'].to(device)
|
199 |
-
|
200 |
-
# # Retrieve Documents
|
201 |
-
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
202 |
-
# question_encoder_pool_output = question_encoder_output[0]
|
203 |
-
|
204 |
-
# result = rag_model.retriever(
|
205 |
-
# retriever_input_ids,
|
206 |
-
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
207 |
-
# prefix = rag_model.rag.generator.config.prefix,
|
208 |
-
# n_docs = rag_model.config.n_docs,
|
209 |
-
# return_tensors = 'pt',
|
210 |
-
# )
|
211 |
-
|
212 |
-
# # Preparing query and retrieved docs for model
|
213 |
-
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
214 |
-
# retrieved_context = []
|
215 |
-
# for docs in all_docs:
|
216 |
-
# titles = [strip_title(title) for title in docs['title']]
|
217 |
-
# texts = docs['text']
|
218 |
-
# for title, text in zip(titles, texts):
|
219 |
-
# retrieved_context.append(f'{title}: {text}')
|
220 |
-
# print(retrieved_context)
|
221 |
-
|
222 |
-
# generation_model_input = input_format(query, retrieved_context[0])
|
223 |
-
|
224 |
-
# # Generating answer using gemma model
|
225 |
-
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
226 |
-
# input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device)
|
227 |
-
# output = generating_model.generate(input_ids, max_new_tokens = 256)
|
228 |
-
|
229 |
-
# return tokenizer.decode(output[0])
|
230 |
-
|
231 |
-
|
232 |
-
# def respond(
|
233 |
-
# message,
|
234 |
-
# history: list[tuple[str, str]],
|
235 |
-
# system_message,
|
236 |
-
# max_tokens ,
|
237 |
-
# temperature,
|
238 |
-
# top_p,
|
239 |
-
# ):
|
240 |
-
# if message: # If there's a user query
|
241 |
-
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
|
242 |
-
# return response
|
243 |
-
|
244 |
-
# # In case no message, return an empty string
|
245 |
-
# return ""
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
# """
|
250 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
251 |
-
# """
|
252 |
-
# # Custom title and description
|
253 |
-
# title = "🧠 Welcome to Your AI Knowledge Assistant"
|
254 |
-
# description = """
|
255 |
-
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
|
256 |
-
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
257 |
-
# """
|
258 |
-
|
259 |
-
# demo = gr.ChatInterface(
|
260 |
-
# respond,
|
261 |
-
# type = 'messages',
|
262 |
-
# additional_inputs=[
|
263 |
-
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
264 |
-
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
265 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
266 |
-
# gr.Slider(
|
267 |
-
# minimum=0.1,
|
268 |
-
# maximum=1.0,
|
269 |
-
# value=0.95,
|
270 |
-
# step=0.05,
|
271 |
-
# label="Top-p (nucleus sampling)",
|
272 |
-
# ),
|
273 |
-
# ],
|
274 |
-
# title=title,
|
275 |
-
# description=description,
|
276 |
-
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
277 |
-
# examples=[["✨Future of AI"], ["📱App Development"]],
|
278 |
-
# #example_icons=["🤖", "📱"],
|
279 |
-
# theme="compact",
|
280 |
-
# submit_btn = True,
|
281 |
-
# )
|
282 |
-
|
283 |
-
|
284 |
-
# if __name__ == "__main__":
|
285 |
-
# demo.launch(share = True,
|
286 |
-
# show_error = True)
|
287 |
-
|
288 |
-
|
289 |
-
import torch
|
290 |
-
import transformers
|
291 |
-
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM, pipeline
|
292 |
-
import gradio as gr
|
293 |
-
|
294 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
295 |
-
|
296 |
-
|
297 |
-
dataset_path = "./5k_index_data/my_knowledge_dataset"
|
298 |
-
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
299 |
-
|
300 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
301 |
-
passages_path = dataset_path,
|
302 |
-
index_path = index_path,
|
303 |
-
n_docs = 5)
|
304 |
-
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
305 |
-
rag_model.retriever.init_retrieval()
|
306 |
-
rag_model.to(device)
|
307 |
-
|
308 |
-
pipe = pipeline(
|
309 |
-
"text-generation",
|
310 |
-
model="google/gemma-2-2b-it",
|
311 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
312 |
-
device=device,
|
313 |
-
)
|
314 |
-
|
315 |
-
def strip_title(title):
|
316 |
-
if title.startswith('"'):
|
317 |
-
title = title[1:]
|
318 |
-
if title.endswith('"'):
|
319 |
-
title = title[:-1]
|
320 |
-
|
321 |
-
return title
|
322 |
-
|
323 |
-
|
324 |
-
def retrieved_info(query, rag_model = rag_model):
|
325 |
-
# Tokenize Query
|
326 |
-
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
327 |
-
[query],
|
328 |
-
return_tensors = 'pt',
|
329 |
-
padding = True,
|
330 |
-
truncation = True,
|
331 |
-
)['input_ids'].to(device)
|
332 |
-
|
333 |
-
# Retrieve Documents
|
334 |
-
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
335 |
-
question_encoder_pool_output = question_encoder_output[0]
|
336 |
-
|
337 |
-
result = rag_model.retriever(
|
338 |
-
retriever_input_ids,
|
339 |
-
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
340 |
-
prefix = rag_model.rag.generator.config.prefix,
|
341 |
-
n_docs = rag_model.config.n_docs,
|
342 |
-
return_tensors = 'pt',
|
343 |
-
)
|
344 |
-
|
345 |
-
# Preparing query and retrieved docs for model
|
346 |
-
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
347 |
-
retrieved_context = []
|
348 |
-
for docs in all_docs:
|
349 |
-
titles = [strip_title(title) for title in docs['title']]
|
350 |
-
texts = docs['text']
|
351 |
-
for title, text in zip(titles, texts):
|
352 |
-
retrieved_context.append(f'{title}: {text}')
|
353 |
-
|
354 |
-
|
355 |
-
# Generating answer using gemma model
|
356 |
-
|
357 |
-
messages = [
|
358 |
-
{"role": "user", "content": f"{query}"},
|
359 |
-
{"role": "system" , "content": f"Context: {retrieved_context}. Use the links and information from the Context to answer the query in brief. Provide links in the answer."}
|
360 |
-
]
|
361 |
-
|
362 |
-
outputs = pipe(messages, max_new_tokens=256)
|
363 |
-
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
364 |
-
|
365 |
-
return assistant_response
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
def respond(
|
370 |
-
message,
|
371 |
-
history: list[tuple[str, str]],
|
372 |
-
system_message,
|
373 |
-
max_tokens ,
|
374 |
-
temperature,
|
375 |
-
top_p,
|
376 |
-
):
|
377 |
-
if message: # If there's a user query
|
378 |
-
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
|
379 |
-
return response
|
380 |
-
|
381 |
-
# In case no message, return an empty string
|
382 |
-
return ""
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
"""
|
387 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
388 |
-
"""
|
389 |
-
# Custom title and description
|
390 |
-
title = "🧠 Welcome to Your AI Knowledge Assistant"
|
391 |
-
description = """
|
392 |
-
HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
|
393 |
-
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
394 |
-
"""
|
395 |
-
|
396 |
-
|
397 |
-
demo = gr.ChatInterface(
|
398 |
-
respond,
|
399 |
-
type = 'messages',
|
400 |
-
additional_inputs=[
|
401 |
-
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
402 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
403 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
404 |
-
gr.Slider(
|
405 |
-
minimum=0.1,
|
406 |
-
maximum=1.0,
|
407 |
-
value=0.95,
|
408 |
-
step=0.05,
|
409 |
-
label="Top-p (nucleus sampling)",
|
410 |
-
),
|
411 |
-
],
|
412 |
-
title=title,
|
413 |
-
description=description,
|
414 |
-
submit_btn = True,
|
415 |
-
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
416 |
-
examples=[["Future of AI"], ["App Development"]],
|
417 |
-
theme="compact",
|
418 |
-
)
|
419 |
-
|
420 |
-
|
421 |
-
if __name__ == "__main__":
|
422 |
-
demo.launch(share = True )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_RAG.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from transformers import RagRetriever, RagSequenceForGeneration, AutoModelForCausalLM, pipeline
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
|
8 |
+
dataset_path = "./5k_index_data/my_knowledge_dataset"
|
9 |
+
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
10 |
+
|
11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
12 |
+
passages_path = dataset_path,
|
13 |
+
index_path = index_path,
|
14 |
+
n_docs = 5)
|
15 |
+
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
16 |
+
rag_model.retriever.init_retrieval()
|
17 |
+
rag_model.to(device)
|
18 |
+
|
19 |
+
pipe = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model="google/gemma-2-2b-it",
|
22 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
+
|
26 |
+
def strip_title(title):
|
27 |
+
if title.startswith('"'):
|
28 |
+
title = title[1:]
|
29 |
+
if title.endswith('"'):
|
30 |
+
title = title[:-1]
|
31 |
+
|
32 |
+
return title
|
33 |
+
|
34 |
+
|
35 |
+
def retrieved_info(query, rag_model = rag_model):
|
36 |
+
# Tokenize Query
|
37 |
+
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
38 |
+
[query],
|
39 |
+
return_tensors = 'pt',
|
40 |
+
padding = True,
|
41 |
+
truncation = True,
|
42 |
+
)['input_ids'].to(device)
|
43 |
+
|
44 |
+
# Retrieve Documents
|
45 |
+
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
46 |
+
question_encoder_pool_output = question_encoder_output[0]
|
47 |
+
|
48 |
+
result = rag_model.retriever(
|
49 |
+
retriever_input_ids,
|
50 |
+
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
51 |
+
prefix = rag_model.rag.generator.config.prefix,
|
52 |
+
n_docs = rag_model.config.n_docs,
|
53 |
+
return_tensors = 'pt',
|
54 |
+
)
|
55 |
+
|
56 |
+
# Preparing query and retrieved docs for model
|
57 |
+
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
58 |
+
retrieved_context = []
|
59 |
+
for docs in all_docs:
|
60 |
+
titles = [strip_title(title) for title in docs['title']]
|
61 |
+
texts = docs['text']
|
62 |
+
for title, text in zip(titles, texts):
|
63 |
+
retrieved_context.append(f'{title}: {text}')
|
64 |
+
|
65 |
+
|
66 |
+
# Generating answer using gemma model
|
67 |
+
|
68 |
+
messages = [
|
69 |
+
{"role": "user", "content": f"{query}"},
|
70 |
+
{"role": "system" , "content": f"Context: {retrieved_context}. Use the links and information from the Context to answer the query in brief. Provide links in the answer."}
|
71 |
+
]
|
72 |
+
|
73 |
+
outputs = pipe(messages, max_new_tokens=256)
|
74 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
75 |
+
|
76 |
+
return assistant_response
|
77 |
+
|
78 |
+
|
79 |
+
def respond(
|
80 |
+
message,
|
81 |
+
history: list[tuple[str, str]],
|
82 |
+
system_message,
|
83 |
+
max_tokens ,
|
84 |
+
temperature,
|
85 |
+
top_p,
|
86 |
+
):
|
87 |
+
if message: # If there's a user query
|
88 |
+
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
|
89 |
+
return response
|
90 |
+
|
91 |
+
# In case no message, return an empty string
|
92 |
+
return ""
|
93 |
+
|
94 |
+
|
95 |
+
"""
|
96 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
97 |
+
"""
|
98 |
+
# Custom title and description
|
99 |
+
title = "🧠 Welcome to Your AI Knowledge Assistant"
|
100 |
+
description = """
|
101 |
+
HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
|
102 |
+
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
103 |
+
"""
|
104 |
+
|
105 |
+
demo = gr.ChatInterface(
|
106 |
+
respond,
|
107 |
+
type = 'messages',
|
108 |
+
additional_inputs=[
|
109 |
+
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
110 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
111 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
112 |
+
gr.Slider(
|
113 |
+
minimum=0.1,
|
114 |
+
maximum=1.0,
|
115 |
+
value=0.95,
|
116 |
+
step=0.05,
|
117 |
+
label="Top-p (nucleus sampling)",
|
118 |
+
),
|
119 |
+
],
|
120 |
+
title=title,
|
121 |
+
description=description,
|
122 |
+
submit_btn = True,
|
123 |
+
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
124 |
+
examples=[["Future of AI"], ["App Development"]],
|
125 |
+
theme="compact",
|
126 |
+
)
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
demo.launch(share = True )
|