Spaces:
Sleeping
Sleeping
adding new version of whisper
Browse files- app.py +9 -7
- requirements.txt +1 -0
- whisper.py +205 -0
app.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
from AinaTheme import theme
|
5 |
|
6 |
MODEL_NAME = "/whisper-large-v3"
|
|
|
7 |
|
8 |
|
9 |
-
|
10 |
-
def transcribe(inputs):
|
11 |
if inputs is None:
|
12 |
raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer "\
|
13 |
"o enregistreu un àudio abans d'enviar la vostra sol·licitud")
|
14 |
|
15 |
-
return generate(
|
16 |
|
17 |
|
18 |
description_string = "Transcripció automàtica de micròfon o de fitxers d'àudio.\n Aquest demostrador s'ha desenvolupat per"\
|
@@ -22,7 +22,8 @@ description_string = "Transcripció automàtica de micròfon o de fitxers d'àud
|
|
22 |
|
23 |
def clear():
|
24 |
return (
|
25 |
-
None
|
|
|
26 |
)
|
27 |
|
28 |
|
@@ -30,6 +31,7 @@ with gr.Blocks(theme=theme) as demo:
|
|
30 |
gr.Markdown(description_string)
|
31 |
with gr.Row():
|
32 |
with gr.Column(scale=1):
|
|
|
33 |
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
34 |
|
35 |
with gr.Column(scale=1):
|
@@ -40,8 +42,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
40 |
submit_btn = gr.Button("Submit", variant="primary")
|
41 |
|
42 |
|
43 |
-
submit_btn.click(fn=transcribe, inputs=[input], outputs=[output])
|
44 |
-
clear_btn.click(fn=clear,inputs=[], outputs=[input], queue=False,)
|
45 |
|
46 |
|
47 |
if __name__ == "__main__":
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
+
from whisper import generate
|
4 |
from AinaTheme import theme
|
5 |
|
6 |
MODEL_NAME = "/whisper-large-v3"
|
7 |
+
USE_V4 = False
|
8 |
|
9 |
|
10 |
+
def transcribe(inputs, use_v4):
|
|
|
11 |
if inputs is None:
|
12 |
raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer "\
|
13 |
"o enregistreu un àudio abans d'enviar la vostra sol·licitud")
|
14 |
|
15 |
+
return generate(audio_path=inputs, use_v4=use_v4)
|
16 |
|
17 |
|
18 |
description_string = "Transcripció automàtica de micròfon o de fitxers d'àudio.\n Aquest demostrador s'ha desenvolupat per"\
|
|
|
22 |
|
23 |
def clear():
|
24 |
return (
|
25 |
+
None,
|
26 |
+
USE_V4
|
27 |
)
|
28 |
|
29 |
|
|
|
31 |
gr.Markdown(description_string)
|
32 |
with gr.Row():
|
33 |
with gr.Column(scale=1):
|
34 |
+
use_v4 = gr.Checkbox(label="Use v4", value=USE_V4)
|
35 |
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
36 |
|
37 |
with gr.Column(scale=1):
|
|
|
42 |
submit_btn = gr.Button("Submit", variant="primary")
|
43 |
|
44 |
|
45 |
+
submit_btn.click(fn=transcribe, inputs=[input, use_v4], outputs=[output])
|
46 |
+
clear_btn.click(fn=clear,inputs=[], outputs=[input, use_v4], queue=False,)
|
47 |
|
48 |
|
49 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
|
|
3 |
yt-dlp
|
4 |
gradio==4.20.0
|
5 |
torchaudio==2.2.1
|
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
3 |
+
pyannote.audio
|
4 |
yt-dlp
|
5 |
gradio==4.20.0
|
6 |
torchaudio==2.2.1
|
whisper.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyannote.audio import Pipeline
|
2 |
+
from pydub import AudioSegment
|
3 |
+
import os
|
4 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
5 |
+
import torchaudio
|
6 |
+
import torch
|
7 |
+
|
8 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
9 |
+
torch_dtype = torch.float32
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
13 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device)
|
14 |
+
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
15 |
+
pipeline_vad = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ.get("HF_TOKEN"))
|
16 |
+
threshold = 15000 # adjust max duration threshold
|
17 |
+
segments_dir = "."
|
18 |
+
|
19 |
+
def clean_text(input_text):
|
20 |
+
|
21 |
+
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
|
22 |
+
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
|
23 |
+
|
24 |
+
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text) #removing special chars
|
25 |
+
return (' '.join(output_text.split()).lower()) #remove extra spaces and return cleaned text
|
26 |
+
|
27 |
+
def convert_forced_to_tokens(forced_decoder_ids):
|
28 |
+
forced_decoder_tokens = []
|
29 |
+
for i, (idx, token) in enumerate(forced_decoder_ids):
|
30 |
+
if token is not None:
|
31 |
+
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)])
|
32 |
+
else:
|
33 |
+
forced_decoder_tokens.append([idx, token])
|
34 |
+
return forced_decoder_tokens
|
35 |
+
|
36 |
+
def generate_1st_chunk(audio):
|
37 |
+
|
38 |
+
input_audio, sample_rate = torchaudio.load(audio)
|
39 |
+
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
|
40 |
+
|
41 |
+
input_speech = input_audio[0]
|
42 |
+
|
43 |
+
input_features = processor(input_speech,
|
44 |
+
sampling_rate=16_000,
|
45 |
+
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
|
46 |
+
|
47 |
+
forced_decoder_ids = []
|
48 |
+
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
|
49 |
+
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
|
50 |
+
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
|
51 |
+
|
52 |
+
forced_decoder_ids_modified = forced_decoder_ids
|
53 |
+
|
54 |
+
# we need to force these tokens
|
55 |
+
forced_decoder_ids = []
|
56 |
+
|
57 |
+
# now we need to append the prefix tokens (lang, task, timestamps)
|
58 |
+
offset = len(forced_decoder_ids)
|
59 |
+
for idx, token in forced_decoder_ids_modified:
|
60 |
+
forced_decoder_ids.append([idx + offset , token])
|
61 |
+
|
62 |
+
model.generation_config.forced_decoder_ids = forced_decoder_ids
|
63 |
+
|
64 |
+
pred_ids = model.generate(input_features,
|
65 |
+
return_timestamps=True,
|
66 |
+
max_new_tokens=128)
|
67 |
+
#exclude prompt from output
|
68 |
+
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
|
69 |
+
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
|
70 |
+
output_tokens = processor.batch_decode(pred_ids, skip_special_tokens=False)
|
71 |
+
|
72 |
+
return output[1:]
|
73 |
+
|
74 |
+
def generate_from_2nd_chunk(audio, prev_prompt):
|
75 |
+
|
76 |
+
input_audio, sample_rate = torchaudio.load(audio)
|
77 |
+
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
|
78 |
+
|
79 |
+
input_speech = input_audio[0]
|
80 |
+
|
81 |
+
input_features = processor(input_speech,
|
82 |
+
sampling_rate=16_000,
|
83 |
+
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
|
84 |
+
forced_decoder_ids = []
|
85 |
+
|
86 |
+
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
|
87 |
+
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
|
88 |
+
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
|
89 |
+
|
90 |
+
forced_decoder_ids_modified = forced_decoder_ids
|
91 |
+
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
|
92 |
+
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
|
93 |
+
|
94 |
+
prompt_tokens = processor.tokenizer(prev_prompt, add_special_tokens=False).input_ids
|
95 |
+
|
96 |
+
# we need to force these tokens
|
97 |
+
forced_decoder_ids = []
|
98 |
+
for idx, token in enumerate(prompt_tokens):
|
99 |
+
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
|
100 |
+
forced_decoder_ids.append([idx + 1, token])
|
101 |
+
|
102 |
+
# now we add the SOS token at the end
|
103 |
+
offset = len(forced_decoder_ids)
|
104 |
+
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
|
105 |
+
|
106 |
+
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
|
107 |
+
offset = len(forced_decoder_ids)
|
108 |
+
for idx, token in forced_decoder_ids_modified:
|
109 |
+
forced_decoder_ids.append([idx + offset , token])
|
110 |
+
|
111 |
+
model.generation_config.forced_decoder_ids = forced_decoder_ids
|
112 |
+
|
113 |
+
pred_ids = model.generate(input_features,
|
114 |
+
return_timestamps=True,
|
115 |
+
max_new_tokens=128,
|
116 |
+
decoder_start_token_id=forced_bos_token_id)
|
117 |
+
#exclude prompt from output
|
118 |
+
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
|
119 |
+
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
|
120 |
+
output_tokens = processor.batch_decode(pred_ids, skip_special_tokens=False)
|
121 |
+
return output[1:]
|
122 |
+
|
123 |
+
def processing_vad_v3(audio, output_vad, prev_prompt):
|
124 |
+
transcription_audio = ""
|
125 |
+
first_chunk = True
|
126 |
+
for speech in output_vad.get_timeline().support():
|
127 |
+
start, end = speech.start, speech.end
|
128 |
+
segment_audio = audio[start * 1000:end * 1000]
|
129 |
+
segment_audio.export(os.path.join(segments_dir, f"temp_segment.wav"), format="wav")
|
130 |
+
filename = os.path.join(segments_dir, f"temp_segment.wav")
|
131 |
+
if first_chunk:
|
132 |
+
output = generate_1st_chunk(filename)
|
133 |
+
first_chunk = False
|
134 |
+
else:
|
135 |
+
output = generate_from_2nd_chunk(filename, prev_prompt)
|
136 |
+
|
137 |
+
prev_prompt = output
|
138 |
+
transcription_audio = transcription_audio + " " + output
|
139 |
+
|
140 |
+
return transcription_audio
|
141 |
+
|
142 |
+
|
143 |
+
def processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment):
|
144 |
+
transcription_audio = ""
|
145 |
+
is_first_chunk = True
|
146 |
+
for speech in output_vad.get_timeline().support():
|
147 |
+
start, end = speech.start, speech.end
|
148 |
+
segment_duration = (end - start) * 1000
|
149 |
+
segment_audio = audio[start * 1000:end * 1000]
|
150 |
+
|
151 |
+
if max_duration + segment_duration < threshold:
|
152 |
+
concatenated_segment += audio[start * 1000:end * 1000]
|
153 |
+
max_duration += segment_duration
|
154 |
+
else:
|
155 |
+
if len(concatenated_segment) > 0:
|
156 |
+
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
|
157 |
+
concatenated_segment.export(temp_segment_path, format="wav")
|
158 |
+
|
159 |
+
if is_first_chunk:
|
160 |
+
output = generate_1st_chunk(temp_segment_path)
|
161 |
+
is_first_chunk = False
|
162 |
+
else:
|
163 |
+
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
|
164 |
+
|
165 |
+
prev_prompt = output
|
166 |
+
transcription_audio = transcription_audio + output
|
167 |
+
|
168 |
+
max_duration = segment_duration
|
169 |
+
concatenated_segment = segment_audio
|
170 |
+
|
171 |
+
# Process any remaining audio in the concatenated_segment
|
172 |
+
if len(concatenated_segment) > 0:
|
173 |
+
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
|
174 |
+
concatenated_segment.export(temp_segment_path, format="wav")
|
175 |
+
|
176 |
+
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
|
177 |
+
|
178 |
+
prev_prompt = output
|
179 |
+
transcription_audio = transcription_audio + output
|
180 |
+
|
181 |
+
return transcription_audio
|
182 |
+
|
183 |
+
|
184 |
+
def generate(audio_path, use_v4):
|
185 |
+
#check audio lenght
|
186 |
+
audio = AudioSegment.from_wav(audio_path)
|
187 |
+
duration_seconds = len(audio) / 1000.0
|
188 |
+
|
189 |
+
#apply VAD only if the duration is >30s
|
190 |
+
if duration_seconds >= 30:
|
191 |
+
|
192 |
+
output_vad = pipeline_vad(audio_path)
|
193 |
+
concatenated_segment = AudioSegment.empty()
|
194 |
+
max_duration = 0
|
195 |
+
prev_prompt = ""
|
196 |
+
if use_v4:
|
197 |
+
return processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment)
|
198 |
+
else:
|
199 |
+
return processing_vad_v3(audio, output_vad, prev_prompt)
|
200 |
+
else:
|
201 |
+
#if duraion is <30s, process directly with generate
|
202 |
+
return generate_1st_chunk(audio_path)
|
203 |
+
|
204 |
+
|
205 |
+
|