asr-inference / whisper.py
ankush13r's picture
make model offline
c4dca95
import os
from pyannote.audio import Pipeline
from pydub import AudioSegment
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import torchaudio
import torch
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
MODEL_NAME = "openai/whisper-large-v3"
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device)
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml")
threshold = 15000 # adjust max duration threshold
segments_dir = "."
def clean_text(input_text):
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text) #removing special chars
return (' '.join(output_text.split()).lower()) #remove extra spaces and return cleaned text
def convert_forced_to_tokens(forced_decoder_ids):
forced_decoder_tokens = []
for i, (idx, token) in enumerate(forced_decoder_ids):
if token is not None:
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)])
else:
forced_decoder_tokens.append([idx, token])
return forced_decoder_tokens
def generate_1st_chunk(audio):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
# we need to force these tokens
forced_decoder_ids = []
# now we need to append the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def generate_from_2nd_chunk(audio, prev_prompt):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
prompt_tokens = processor.tokenizer(prev_prompt, add_special_tokens=False).input_ids
# we need to force these tokens
forced_decoder_ids = []
for idx, token in enumerate(prompt_tokens):
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
forced_decoder_ids.append([idx + 1, token])
# now we add the SOS token at the end
offset = len(forced_decoder_ids)
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128,
decoder_start_token_id=forced_bos_token_id)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def processing_vad_v3(audio, output_vad, prev_prompt):
transcription_audio = ""
first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_audio = audio[start * 1000:end * 1000]
filename = os.path.join(segments_dir, f"temp_segment.wav")
segment_audio.export(filename, format="wav")
if first_chunk:
output = generate_1st_chunk(filename)
first_chunk = False
else:
output = generate_from_2nd_chunk(filename, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + " " + output
return transcription_audio
def processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment):
transcription_audio = ""
is_first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_duration = (end - start) * 1000
segment_audio = audio[start * 1000:end * 1000]
if max_duration + segment_duration < threshold:
concatenated_segment += audio[start * 1000:end * 1000]
max_duration += segment_duration
else:
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
if is_first_chunk:
output = generate_1st_chunk(temp_segment_path)
is_first_chunk = False
else:
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
max_duration = segment_duration
concatenated_segment = segment_audio
# Process any remaining audio in the concatenated_segment
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
return transcription_audio
def generate(audio_path, use_v4):
#check audio lenght
audio = AudioSegment.from_wav(audio_path)
duration_seconds = len(audio) / 1000.0
#apply VAD only if the duration is >30s
if duration_seconds >= 30:
output_vad = pipeline_vad(audio_path)
concatenated_segment = AudioSegment.empty()
max_duration = 0
prev_prompt = ""
if use_v4:
return processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment)
else:
return processing_vad_v3(audio, output_vad, prev_prompt)
else:
#if duraion is <30s, process directly with generate
return generate_1st_chunk(audio_path)