asr-inference / whisper.py
wetdog's picture
add new whisper model
aab4a25 verified
raw
history blame
8.17 kB
import os
from pyannote.audio import Pipeline
from pydub import AudioSegment
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import torchaudio
import torch
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
HF_TOKEN = os.getenv("HF_TOKEN")
#MODEL_NAME = "openai/whisper-large-v3"
MODEL_NAME = "projecte-aina/whisper-large-v3-ca-es-synth-cs"
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype,token=HF_TOKEN).to(device)
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
pipeline_vad = Pipeline.from_pretrained("./pyannote/config.yaml")
threshold = 15000 # adjust max duration threshold
segments_dir = "."
def clean_text(input_text):
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text) #removing special chars
return (' '.join(output_text.split()).lower()) #remove extra spaces and return cleaned text
def convert_forced_to_tokens(forced_decoder_ids):
forced_decoder_tokens = []
for i, (idx, token) in enumerate(forced_decoder_ids):
if token is not None:
forced_decoder_tokens.append([idx, processor.tokenizer.decode(token)])
else:
forced_decoder_tokens.append([idx, token])
return forced_decoder_tokens
def generate_1st_chunk(audio):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
# we need to force these tokens
forced_decoder_ids = []
# now we need to append the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def generate_from_2nd_chunk(audio, prev_prompt):
input_audio, sample_rate = torchaudio.load(audio)
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio)
input_speech = input_audio[0]
input_features = processor(input_speech,
sampling_rate=16_000,
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device)
forced_decoder_ids = []
forced_decoder_ids.append([1,50270]) #[1, '<|ca|>']
forced_decoder_ids.append([2,50262]) #[2, '<|es|>']
forced_decoder_ids.append([3,50360]) #[3, '<|transcribe|>']
forced_decoder_ids_modified = forced_decoder_ids
idx = processor.tokenizer.all_special_tokens.index("<|startofprev|>")
forced_bos_token_id = processor.tokenizer.all_special_ids[idx]
prompt_tokens = processor.tokenizer(prev_prompt, add_special_tokens=False).input_ids
# we need to force these tokens
forced_decoder_ids = []
for idx, token in enumerate(prompt_tokens):
# indexing starts from 1 for forced tokens (token at position 0 is the SOS token)
forced_decoder_ids.append([idx + 1, token])
# now we add the SOS token at the end
offset = len(forced_decoder_ids)
forced_decoder_ids.append([offset + 1, model.generation_config.decoder_start_token_id])
# now we need to append the rest of the prefix tokens (lang, task, timestamps)
offset = len(forced_decoder_ids)
for idx, token in forced_decoder_ids_modified:
forced_decoder_ids.append([idx + offset , token])
model.generation_config.forced_decoder_ids = forced_decoder_ids
pred_ids = model.generate(input_features,
return_timestamps=True,
max_new_tokens=128,
decoder_start_token_id=forced_bos_token_id)
#exclude prompt from output
forced_decoder_tokens = convert_forced_to_tokens(forced_decoder_ids)
output = processor.decode(pred_ids[0][len(forced_decoder_tokens) + 1:], skip_special_tokens=True)
return output[1:]
def processing_vad_v3(audio, output_vad, prev_prompt):
transcription_audio = ""
first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_audio = audio[start * 1000:end * 1000]
filename = os.path.join(segments_dir, f"temp_segment.wav")
segment_audio.export(filename, format="wav")
if first_chunk:
output = generate_1st_chunk(filename)
first_chunk = False
else:
output = generate_from_2nd_chunk(filename, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + " " + output
return transcription_audio
def processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment):
transcription_audio = ""
is_first_chunk = True
for speech in output_vad.get_timeline().support():
start, end = speech.start, speech.end
segment_duration = (end - start) * 1000
segment_audio = audio[start * 1000:end * 1000]
if max_duration + segment_duration < threshold:
concatenated_segment += audio[start * 1000:end * 1000]
max_duration += segment_duration
else:
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
if is_first_chunk:
output = generate_1st_chunk(temp_segment_path)
is_first_chunk = False
else:
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
max_duration = segment_duration
concatenated_segment = segment_audio
# Process any remaining audio in the concatenated_segment
if len(concatenated_segment) > 0:
temp_segment_path = os.path.join(segments_dir, f"temp_segment.wav")
concatenated_segment.export(temp_segment_path, format="wav")
output = generate_from_2nd_chunk(temp_segment_path, prev_prompt)
prev_prompt = output
transcription_audio = transcription_audio + output
return transcription_audio
def generate(audio_path, use_v4):
#check audio lenght
audio = AudioSegment.from_wav(audio_path)
duration_seconds = len(audio) / 1000.0
#apply VAD only if the duration is >30s
if duration_seconds >= 30:
output_vad = pipeline_vad(audio_path)
concatenated_segment = AudioSegment.empty()
max_duration = 0
prev_prompt = ""
if use_v4:
return processing_vad_v4(audio, output_vad, threshold, max_duration, prev_prompt, concatenated_segment)
else:
return processing_vad_v3(audio, output_vad, prev_prompt)
else:
#if duraion is <30s, process directly with generate
return generate_1st_chunk(audio_path)