asr-inference / app.py
ankush13r's picture
Update app.py
85b6c52 verified
raw
history blame
1.6 kB
import gradio as gr
from whisper2 import generate
from AinaTheme import theme
MODEL_NAME = "/whisper-large-v3"
def transcribe(inputs):
if inputs is None:
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
return generate(audio=inputs)
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
" comprovar els models de reconeixement de parla per a m贸bils. Per ara utilitza el checkpoint "\
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 馃 Transformers per a la transcripci贸."
def clear():
return (
None
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description_string)
with gr.Row():
with gr.Column(scale=1):
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
with gr.Column(scale=1):
temperatures = gr.CheckboxGroup(choices=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], value=[0.0, 0.2, 0.4], label="temperatures")
output = gr.Textbox(label="Output", lines=8)
with gr.Row(variant="panel"):
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
submit_btn.click(fn=transcribe, inputs=[input], outputs=[output])
clear_btn.click(fn=clear,inputs=[], outputs=[input], queue=False,)
if __name__ == "__main__":
demo.launch()