SimEIT-demo / README.md
AymanAmeen's picture
Update README.md
414cfe5 verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: SimEIT Datasets Visualizer
emoji: πŸ”¬
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
license: apache-2.0
tags:
  - medical-imaging
  - electrical-impedance-tomography
  - eit
  - dataset-visualization
  - simulation
  - pytorch
  - computer-vision
short_description: Visualizer for SimEIT synthetic EIT datasets

SimEIT: Large-Scale Electrical Impedance Tomography Dataset Visualizer

A Scalable Simulation Framework for Generating Physically Consistent, AI-Ready EIT Training Data

Ayman A. Ameen1, Franziska Mathis-Ullrich1, Bernhard Kainz2

1Friedrich-Alexander University Erlangen-NΓΌrnberg
2Imperial College London


🎯 About This Demo

This interactive demo allows you to explore large-scale synthetic EIT (Electrical Impedance Tomography) datasets generated using the SimEIT frameworkβ€”a scalable simulation platform for creating physically consistent, AI-ready training data.

πŸ”¬ What is SimEIT?

Electrical Impedance Tomography (EIT) offers advantages over conventional imaging methods, such as X-ray and MRI, but suffers from an ill-posed inverse problem. Deep learning can alleviate this challenge, yet progress is limited by the lack of large, diverse, and reproducible datasets.

SimEIT enables high-throughput creation of diverse geometries and conductivity maps using parallelized finite element simulations, reproducible seeding, and automated validation. The framework provides multi-resolution, AI-ready HDF5 outputs with PyTorch integration, bridging the gap between physical simulation and AI training.

✨ Features

  • πŸ”„ Streaming Mode: Load datasets directly from Hugging Face Hub without downloading
  • πŸ–ΌοΈ Multi-resolution Images: View images at different resolutions (256Γ—256, 128Γ—128, 64Γ—64, 32Γ—32)
  • πŸ“Š Interactive Voltage Plots: Visualize voltage data per electrode with Plotly
  • 🎨 Customizable Colormaps: Choose from 18 different scientific colormaps
  • 🎲 Flexible Selection: Choose samples randomly or by specific index
  • πŸ’Ύ Efficient Caching: LRU cache for fast repeated access to samples
  • πŸ“ˆ Two Dataset Variants: Explore 'FourObjects' or 'CirclesOnly' subsets

πŸš€ How to Use

  1. Select Dataset Configuration: Choose between 'FourObjects' or 'CirclesOnly' subsets
  2. Choose a Sample:
    • Click "Generate Random Index" for a random sample
    • Or enter a specific index (0-100,000)
  3. Customize Visualization:
    • Select your preferred image resolution
    • Choose a colormap for visualization
    • Toggle between linear and log scales
  4. View Results:
    • Explore multi-resolution conductivity and permittivity maps
    • Analyze electrode voltage measurements
    • Examine the domain geometry

πŸ“Š Dataset Information

The SimEIT dataset contains:

  • 100,000+ samples per subset
  • Multi-resolution images: 256Γ—256, 128Γ—128, 64Γ—64, 32Γ—32
  • Physical parameters: Conductivity, permittivity, electrode voltages
  • Geometry information: Object positions and boundaries
  • Two subsets:
    • FourObjects: Complex scenes with up to 4 objects
    • CirclesOnly: Simplified circular objects

πŸ”— Links

πŸ› οΈ Technical Details

This visualizer uses:

  • Gradio for the interactive interface
  • HDF5 for efficient data storage and streaming
  • Plotly for interactive plots
  • Hugging Face Hub for seamless dataset access
  • NumPy and OpenCV for image processing

πŸ“ Citation

If you use the SimEIT dataset or framework in your research, please cite:

@misc{simeit2025,
  title={SimEIT: A Scalable Simulation Framework for Generating Physically Consistent, AI-Ready EIT Training Data},
  author={Ameen, Ayman A. and Mathis-Ullrich, Franziska and Kainz, Bernhard},
  year={2025},
  institution={Friedrich-Alexander University Erlangen-NΓΌrnberg, Imperial College London}
}

πŸ“§ Contact

For questions or feedback:

  • Ayman A. Ameen: just drop an email.
  • Issues: Please open an issue on GitHub

πŸ“„ License

This project is licensed under the apache-2.0 License. See the LICENSE file for details.


Built with ❀️ for the research community