Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import os | |
| from huggingface_hub import snapshot_download, login | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from src.display.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| CONTACT_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| SUB_TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.envs import API | |
| from src.leaderboard.load_results import load_data | |
| def restart_space(): | |
| API.restart_space(repo_id="Auto-Arena/Leaderboard") | |
| csv_path = f"./src/results/auto-arena-llms-results-20241007.csv" | |
| csv_path_chinese = f"./src/results/auto-arena-llms-results-chinese-20240531.csv" | |
| df_results = load_data(csv_path).sort_values(by="Rank") | |
| df_results_chinese = load_data(csv_path_chinese) | |
| all_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score'] | |
| show_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score'] | |
| TYPES = ['number', 'markdown', 'str', 'str', 'str', 'str', 'number'] | |
| df_results_init = df_results.copy()[show_columns] | |
| df_results_chinese_init = df_results_chinese.copy()[show_columns] | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| # columns: list, | |
| #type_query: list, | |
| open_query: list, | |
| # precision_query: str, | |
| # size_query: list, | |
| # show_deleted: bool, | |
| query: str, | |
| ): | |
| # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
| # filtered_df = filter_queries(query, filtered_df) | |
| # df = select_columns(filtered_df, columns) | |
| filtered_df = hidden_df.copy() | |
| # filtered_df = filtered_df[filtered_df['type'].isin(type_query)] | |
| map_open = {'open': 'Yes', 'closed': 'No'} | |
| filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])] | |
| filtered_df = filter_queries(query, filtered_df) | |
| # filtered_df = filtered_df[[map_columns[k] for k in columns]] | |
| # deduplication | |
| # df = df.drop_duplicates(subset=["Model"]) | |
| df = filtered_df.drop_duplicates() | |
| df = df[show_columns] | |
| return df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df['Model'].str.contains(query, case=False))] | |
| def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| return filtered_df | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(SUB_TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # the first tab | |
| with gr.TabItem("English", elem_id="llm-benchmark-Sum", id=0): | |
| # meta-info | |
| with gr.Row(): | |
| with gr.Column(): | |
| search_bar = gr.Textbox( | |
| placeholder=" π Search for models you are interested in (separate multiple models with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # type_query = gr.CheckboxGroup( | |
| # choices=["π’ base", "πΆ chat"], | |
| # value=["πΆ chat" ], | |
| # label="model types to show", | |
| # elem_id="type-select", | |
| # interactive=True, | |
| # ) | |
| with gr.Column(): | |
| open_query = gr.CheckboxGroup( | |
| choices=["open", "closed"], | |
| value=["open", "closed"], | |
| label="open-source OR closed-source models?", | |
| elem_id="open-select", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value = df_results, | |
| datatype = TYPES, | |
| elem_id = "leaderboard-table", | |
| interactive = False, | |
| visible=True, | |
| # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"], | |
| ) | |
| gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.") | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=df_results_init, | |
| # elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| # df_avg, | |
| hidden_leaderboard_table_for_search, | |
| # shown_columns, | |
| #type_query, | |
| open_query, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| #for selector in [type_query, open_query]: | |
| for selector in [open_query]: | |
| selector.change( | |
| update_table, | |
| [ | |
| # df_avg, | |
| hidden_leaderboard_table_for_search, | |
| # shown_columns, | |
| #type_query, | |
| open_query, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| with gr.TabItem("Chinese", elem_id="llm-benchmark-Sum", id=1): | |
| # meta-info | |
| with gr.Row(): | |
| with gr.Column(): | |
| search_bar = gr.Textbox( | |
| placeholder=" π Search for models you are interested in (separate multiple models with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # type_query = gr.CheckboxGroup( | |
| # choices=["π’ base", "πΆ chat"], | |
| # value=["πΆ chat" ], | |
| # label="model types to show", | |
| # elem_id="type-select", | |
| # interactive=True, | |
| # ) | |
| with gr.Column(): | |
| open_query = gr.CheckboxGroup( | |
| choices=["open", "closed"], | |
| value=["open", "closed"], | |
| label="open-source OR closed-source models?", | |
| elem_id="open-select", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value = df_results_chinese, | |
| datatype = TYPES, | |
| elem_id = "leaderboard-table", | |
| interactive = False, | |
| visible=True, | |
| # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"], | |
| ) | |
| gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.") | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=df_results_chinese_init, | |
| # elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| # df_avg, | |
| hidden_leaderboard_table_for_search, | |
| # shown_columns, | |
| #type_query, | |
| open_query, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| #for selector in [type_query, open_query]: | |
| for selector in [open_query]: | |
| selector.change( | |
| update_table, | |
| [ | |
| # df_avg, | |
| hidden_leaderboard_table_for_search, | |
| # shown_columns, | |
| #type_query, | |
| open_query, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=1): | |
| # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # with gr.Row(): | |
| # with gr.Accordion("π Citation", open=False): | |
| # citation_button = gr.Textbox( | |
| # value=CITATION_BUTTON_TEXT, | |
| # label=CITATION_BUTTON_LABEL, | |
| # lines=20, | |
| # elem_id="citation-button", | |
| # show_copy_button=True, | |
| # ) | |
| gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text") | |
| demo.launch() | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch(share=True) | |