Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import dataclasses | |
import io | |
import itertools | |
import json | |
import os | |
import unittest | |
from copy import deepcopy | |
from functools import partial | |
import datasets | |
from parameterized import parameterized | |
import tests.trainer.test_trainer | |
import transformers | |
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa | |
from transformers import AutoModel, TrainingArguments, is_torch_available, logging | |
from transformers.integrations.deepspeed import ( | |
HfDeepSpeedConfig, | |
is_deepspeed_available, | |
unset_hf_deepspeed_config, | |
) | |
from transformers.testing_utils import ( | |
CaptureLogger, | |
CaptureStd, | |
CaptureStderr, | |
LoggingLevel, | |
TestCasePlus, | |
backend_device_count, | |
execute_subprocess_async, | |
mockenv_context, | |
require_deepspeed, | |
require_optuna, | |
require_torch_accelerator, | |
require_torch_multi_accelerator, | |
slow, | |
torch_device, | |
) | |
from transformers.trainer_utils import get_last_checkpoint, set_seed | |
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device | |
if is_torch_available(): | |
import torch | |
from tests.trainer.test_trainer import ( # noqa | |
RegressionModelConfig, | |
RegressionPreTrainedModel, | |
) | |
# hack to restore original logging level pre #21700 | |
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info") | |
set_seed(42) | |
# default torch.distributed port | |
DEFAULT_MASTER_PORT = "10999" | |
T5_SMALL = "google-t5/t5-small" | |
T5_TINY = "patrickvonplaten/t5-tiny-random" | |
GPT2_TINY = "sshleifer/tiny-gpt2" | |
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj" | |
def load_json(path): | |
with open(path) as f: | |
return json.load(f) | |
def get_master_port(real_launcher=False): | |
""" | |
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed) | |
the issue is that once the port is tied it can't be used anywhere else outside of this process, | |
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being | |
able to run both emulated launcher and normal launcher tests we need 2 distinct ports. | |
This function will give the right port in the right context. For real launcher it'll give the | |
base port, for emulated launcher it'll give the base port + 1. In both cases a string is | |
returned. | |
Args: | |
`real_launcher`: whether a real launcher is going to be used, or the emulated one | |
""" | |
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT) | |
if not real_launcher: | |
master_port_base = str(int(master_port_base) + 1) | |
return master_port_base | |
def require_deepspeed_aio(test_case): | |
""" | |
Decorator marking a test that requires deepspeed aio (nvme) | |
""" | |
if not is_deepspeed_available(): | |
return unittest.skip("test requires deepspeed")(test_case) | |
import deepspeed | |
from deepspeed.ops.aio import AsyncIOBuilder | |
if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]: | |
return unittest.skip("test requires deepspeed async-io")(test_case) | |
else: | |
return test_case | |
if is_deepspeed_available(): | |
from deepspeed.utils import logger as deepspeed_logger # noqa | |
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | |
from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled # noqa | |
def get_launcher(distributed=False): | |
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup | |
# - it won't be able to handle that | |
# 2. for now testing with just 2 gpus max (since some quality tests may give different | |
# results with mode gpus because we use very little data) | |
num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1 | |
master_port = get_master_port(real_launcher=True) | |
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split() | |
ZERO2 = "zero2" | |
ZERO3 = "zero3" | |
FP16 = "fp16" | |
BF16 = "bf16" | |
HF_OPTIM = "hf_optim" | |
HF_SCHEDULER = "hf_scheduler" | |
DS_OPTIM = "ds_optim" | |
DS_SCHEDULER = "ds_scheduler" | |
optims = [HF_OPTIM, DS_OPTIM] | |
schedulers = [HF_SCHEDULER, DS_SCHEDULER] | |
stages = [ZERO2, ZERO3] | |
if is_torch_bf16_available_on_device(torch_device): | |
dtypes = [FP16, BF16] | |
else: | |
dtypes = [FP16] | |
def parameterized_custom_name_func(func, param_num, param): | |
# customize the test name generator function as we want both params to appear in the sub-test | |
# name, as by default it shows only the first param | |
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) | |
return f"{func.__name__}_{param_based_name}" | |
# Cartesian-product of zero stages with models to test | |
params = list(itertools.product(stages, dtypes)) | |
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers)) | |
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon): | |
""" | |
Testing non-Trainer DeepSpeed integration | |
""" | |
def setUp(self): | |
super().setUp() | |
master_port = get_master_port(real_launcher=False) | |
self.dist_env_1_gpu = { | |
"MASTER_ADDR": "localhost", | |
"MASTER_PORT": master_port, | |
"RANK": "0", | |
"LOCAL_RANK": "0", | |
"WORLD_SIZE": "1", | |
} | |
def tearDown(self): | |
super().tearDown() | |
# reset the ds config global so that tests state doesn't leak | |
unset_hf_deepspeed_config() | |
def test_init_zero3_fp16(self): | |
# test that zero.Init() works correctly under zero3/fp16 | |
ds_config = { | |
"train_batch_size": 1, | |
"zero_optimization": { | |
"stage": 3, | |
}, | |
} | |
dschf = HfDeepSpeedConfig(ds_config) | |
self.assertTrue(dschf.is_zero3()) | |
self.assertTrue(is_deepspeed_zero3_enabled()) | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
AutoModel.from_pretrained(T5_TINY) | |
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) | |
# now remove zero optimization | |
del ds_config["zero_optimization"] | |
dschf = HfDeepSpeedConfig(ds_config) | |
self.assertFalse(dschf.is_zero3()) | |
self.assertFalse(is_deepspeed_zero3_enabled()) | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
AutoModel.from_pretrained(T5_TINY) | |
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) | |
def test_init_zero3_missing_params(self): | |
# test that zero.Init() for missing parameters works correctly under zero3 | |
import deepspeed | |
import torch | |
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel | |
class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config) | |
self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True) | |
def forward(self, *args, **kwargs): | |
transformer_outputs = self.transformer(*args, **kwargs) | |
hidden_states = transformer_outputs[0] | |
return self.new_head(hidden_states).float() | |
def _init_weights(self, module): | |
super()._init_weights(module) | |
if module is self.new_head: | |
self.new_head.weight.data.fill_(-100.0) | |
self.new_head.bias.data.fill_(+100.0) | |
ds_config = { | |
"train_batch_size": 1, | |
"zero_optimization": { | |
"stage": 3, | |
}, | |
} | |
dschf = HfDeepSpeedConfig(ds_config) | |
self.assertTrue(dschf.is_zero3()) | |
self.assertTrue(is_deepspeed_zero3_enabled()) | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) | |
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) | |
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") | |
with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]): | |
self.assertTrue( | |
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), | |
) | |
self.assertTrue( | |
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), | |
) | |
# now remove zero optimization | |
del ds_config["zero_optimization"] | |
dschf = HfDeepSpeedConfig(ds_config) | |
self.assertFalse(dschf.is_zero3()) | |
self.assertFalse(is_deepspeed_zero3_enabled()) | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY) | |
self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out) | |
self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight") | |
self.assertTrue( | |
torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)), | |
) | |
self.assertTrue( | |
torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)), | |
) | |
def test_arange_bf16(self): | |
# Tests that configuring DeepSpeed with 16 bits does not cause float `torch.arange()` tensors to be cast down. | |
# NOTE -- this assumes that the function calls have the following downcast-preventing pattern, i.e. | |
# `torch.arange(...,dtype=torch.int64)` followed by a cast like `.to(torch.float32)`. 🚨 If this pattern is | |
# NOT applied (e.g. `torch.arange(...,dtype=torch.float32)` is used), DeepSpeed can automatically cast it down | |
# at init time. See https://github.com/huggingface/transformers/issues/28685 for more info. | |
ds_config = { | |
"train_batch_size": 1, | |
"zero_optimization": { | |
"stage": 3, | |
}, | |
"bf16": {"enabled": True}, | |
} | |
dschf = HfDeepSpeedConfig(ds_config) | |
self.assertTrue(dschf.is_zero3()) | |
self.assertTrue(is_deepspeed_zero3_enabled()) | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
model = AutoModel.from_pretrained(GPTJ_TINY) | |
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) | |
# The model weights are in BF16 as per deepspeed config | |
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") | |
good_deepspeed_sin_cos = model.h[0].attn.embed_positions | |
# Monkeypatches the function that creates RoPE embeddings using the INCORRECT torch.arange() pattern, and | |
# then recreates the model | |
def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) | |
# Incorrect pattern here: torch.arange has dtype=torch.float32 as its argument, and it will automatically | |
# converted to BF16 by DeepSpeed | |
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq) | |
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) | |
good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions | |
transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions | |
with LoggingLevel(logging.INFO): | |
with mockenv_context(**self.dist_env_1_gpu): | |
logger = logging.get_logger("transformers.modeling_utils") | |
with CaptureLogger(logger) as cl: | |
model = AutoModel.from_pretrained(GPTJ_TINY) | |
self.assertIn("Detected DeepSpeed ZeRO-3", cl.out) | |
self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16") | |
bad_deepspeed_sin_cos = model.h[0].attn.embed_positions | |
# Compares the two values: the two sets of values are different, and the correct one matches the torch | |
# (i.e. outside DeepSpeed) version. | |
good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions( | |
model.config.max_position_embeddings, model.config.rotary_dim | |
) | |
self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos)) | |
self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu())) | |
# Finally, we can see that the incorrect pattern is okay on vanilla torch, demostrating that this issue is | |
# exclusive to DeepSpeed | |
bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions( | |
model.config.max_position_embeddings, model.config.rotary_dim | |
) | |
self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos)) | |
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus): | |
def setUp(self): | |
super().setUp() | |
args = TrainingArguments(".") | |
self.n_epochs = args.num_train_epochs | |
self.batch_size = args.train_batch_size | |
master_port = get_master_port(real_launcher=False) | |
self.dist_env_1_gpu = { | |
"MASTER_ADDR": "localhost", | |
"MASTER_PORT": master_port, | |
"RANK": "0", | |
"LOCAL_RANK": "0", | |
"WORLD_SIZE": "1", | |
} | |
self.ds_config_file = { | |
"zero2": f"{self.test_file_dir_str}/ds_config_zero2.json", | |
"zero3": f"{self.test_file_dir_str}/ds_config_zero3.json", | |
} | |
# use self.get_config_dict(stage) to use these to ensure the original is not modified | |
with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f: | |
config_zero2 = json.load(f) | |
with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: | |
config_zero3 = json.load(f) | |
# The following setting slows things down, so don't enable it by default unless needed by a test. | |
# It's in the file as a demo for users since we want everything to work out of the box even if slower. | |
config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False | |
self.ds_config_dict = { | |
"zero2": config_zero2, | |
"zero3": config_zero3, | |
} | |
def tearDown(self): | |
super().tearDown() | |
# reset the ds config global so that tests state doesn't leak | |
unset_hf_deepspeed_config() | |
def get_config_dict(self, stage): | |
# As some tests modify the dict, always make a copy | |
return deepcopy(self.ds_config_dict[stage]) | |
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon): | |
""" | |
This class is for testing directly via get_regression_trainer | |
It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods | |
which we can re-use here. | |
Important: this class' setup can only work with a single gpu because it runs within the current | |
pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher. | |
Note: if any of the tests of this class get run there will be at least one gpu occupied by them | |
until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels | |
won't be released until this pytest worker exits. | |
This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new | |
processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This | |
is not a bug. | |
""" | |
# --- These tests are enough to run on one of zero stages --- # | |
def test_hf_ds_config_mismatch(self): | |
ds_config = self.get_config_dict(ZERO2) | |
# Purposefully configure these values to mismatch TrainingArguments values. | |
# This currently doesn't cover all keys (but it could) | |
per_device_train_batch_size = 2 | |
ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2 | |
ds_config["train_batch_size"] = 1000 | |
gradient_accumulation_steps = 2 | |
ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2 | |
max_grad_norm = 1.0 | |
ds_config["gradient_clipping"] = max_grad_norm + 0.1 | |
adam_beta1, adam_beta2 = 0.9, 0.99 | |
ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1] | |
fp16 = True | |
ds_config["fp16"]["enabled"] = not fp16 | |
keys = [ | |
"per_device_train_batch_size", | |
"train_batch_size", | |
"gradient_accumulation_steps", | |
"max_grad_norm", | |
"betas", | |
"fp16", | |
] | |
with mockenv_context(**self.dist_env_1_gpu): | |
trainer = get_regression_trainer( | |
local_rank=0, | |
fp16=fp16, | |
deepspeed=ds_config, | |
per_device_train_batch_size=per_device_train_batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
max_grad_norm=max_grad_norm, | |
adam_beta1=adam_beta1, | |
adam_beta2=adam_beta2, | |
) | |
with self.assertRaises(Exception) as context: | |
trainer.train() | |
for key in keys: | |
self.assertTrue( | |
key in str(context.exception), | |
f"{key} is not in the exception message:\n{context.exception}", | |
) | |
# Test various combos | |
# 1. DS scheduler + DS optimizer: this is already tested by most other tests | |
# 2. HF scheduler + HF optimizer: | |
# 3. DS scheduler + HF optimizer: | |
# 4. HF scheduler + DS optimizer: | |
def test_hf_scheduler_hf_optimizer(self): | |
a = 0 | |
with mockenv_context(**self.dist_env_1_gpu): | |
ds_config_zero2_dict = self.get_config_dict(ZERO2) | |
del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer | |
del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler | |
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" | |
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step | |
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) | |
trainer.train() | |
new_a = trainer.model.a.item() | |
self.assertNotEqual(new_a, a) | |
def test_ds_scheduler_hf_optimizer(self): | |
a = 0 | |
with mockenv_context(**self.dist_env_1_gpu): | |
ds_config_zero2_dict = self.get_config_dict(ZERO2) | |
del ds_config_zero2_dict["optimizer"] # force default HF Trainer optimizer | |
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" | |
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step | |
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) | |
trainer.train() | |
new_a = trainer.model.a.item() | |
self.assertNotEqual(new_a, a) | |
def test_hf_scheduler_ds_optimizer(self): | |
a = 0 | |
with mockenv_context(**self.dist_env_1_gpu): | |
ds_config_zero2_dict = self.get_config_dict(ZERO2) | |
del ds_config_zero2_dict["scheduler"] # force default HF Trainer scheduler | |
ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none" | |
ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step | |
trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict) | |
trainer.train() | |
new_a = trainer.model.a.item() | |
self.assertNotEqual(new_a, a) | |
def test_stage3_nvme_offload(self): | |
with mockenv_context(**self.dist_env_1_gpu): | |
# this actually doesn't have to be on NVMe, any storage will do since this test only | |
# runs a simple check that we can use some directory as if it were NVMe | |
nvme_path = self.get_auto_remove_tmp_dir() | |
nvme_config = {"device": "nvme", "nvme_path": nvme_path} | |
ds_config_zero3_dict = self.get_config_dict(ZERO3) | |
ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config | |
ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config | |
trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict) | |
with CaptureLogger(deepspeed_logger) as cl: | |
trainer.train() | |
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") | |
def test_hyperparameter_search(self): | |
with mockenv_context(**self.dist_env_1_gpu): | |
ds_config_zero3_dict = self.get_config_dict(ZERO3) | |
# hyperparameter_search requires model_init() to recreate the model for each trial | |
def model_init(): | |
config = RegressionModelConfig(a=0, b=0, double_output=False) | |
model = RegressionPreTrainedModel(config) | |
return model | |
trainer = get_regression_trainer( | |
local_rank=0, | |
fp16=True, | |
model_init=model_init, | |
deepspeed=ds_config_zero3_dict, | |
) | |
n_trials = 3 | |
with CaptureLogger(deepspeed_logger) as cl: | |
with CaptureStd() as cs: | |
trainer.hyperparameter_search(direction="maximize", n_trials=n_trials) | |
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") | |
self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output") | |
self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output") | |
# --- These tests need to run on both zero stages --- # | |
def test_hf_optimizer_with_offload(self, stage, dtype): | |
# non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB)) | |
ds_config_dict = self.get_config_dict(stage) | |
del ds_config_dict["optimizer"] # force default HF Trainer optimizer | |
# force cpu offload | |
ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu" | |
ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam | |
with mockenv_context(**self.dist_env_1_gpu): | |
kwargs = {"local_rank": 0, "deepspeed": ds_config_dict} | |
kwargs[dtype] = True | |
trainer = get_regression_trainer(**kwargs) | |
with CaptureLogger(deepspeed_logger) as cl: | |
trainer.train() | |
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") | |
def test_fake_notebook_no_launcher(self, stage, dtype): | |
# this setup emulates a notebook where a launcher needs to be emulated by hand | |
# note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture | |
# DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if | |
# it's run not as a first test as `sys.stdout` will no longer be the same. So we either have | |
# to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger. | |
with mockenv_context(**self.dist_env_1_gpu): | |
kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)} | |
kwargs[dtype] = True | |
trainer = get_regression_trainer(**kwargs) | |
with CaptureLogger(deepspeed_logger) as cl: | |
trainer.train() | |
self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none") | |
def test_early_get_last_lr(self, stage, dtype): | |
# with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may | |
# not run for the first few dozen steps while loss scale is too large, and thus during | |
# that time `get_last_lr` will fail if called during that warm up stage, | |
# | |
# setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls | |
# `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step. | |
with mockenv_context(**self.dist_env_1_gpu): | |
a = b = 0.0 | |
kwargs = { | |
"a": a, | |
"b": b, | |
"local_rank": 0, | |
"train_len": 8, | |
"deepspeed": self.get_config_dict(stage), | |
"per_device_train_batch_size": 8, | |
"logging_steps": 1, | |
} | |
kwargs[dtype] = True | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train() | |
post_train_a = trainer.model.a.item() | |
# XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a | |
# broken but a different qualitative outcome - as if optimizer did run | |
# oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere | |
# print(trainer.model.a.item()) | |
# print(trainer.model.b.item()) | |
# need to investigate at some point | |
if (stage == ZERO3 and dtype == FP16) or (dtype == BF16): | |
return | |
# it's enough that train didn't fail for this test, but we must check that | |
# optimizer/scheduler didn't run (since if it did this test isn't testing the right thing) | |
self.assertEqual(post_train_a, a) | |
def test_gradient_accumulation(self, stage, dtype): | |
# this test measures that we get identical weights and similar loss with: | |
# 1. per_device_train_batch_size=8, gradient_accumulation_steps=1 | |
# 2. per_device_train_batch_size=4, gradient_accumulation_steps=2 | |
# since the 2nd should produce the effective batch of 1st, with the same results | |
# | |
# I can get an identical loss for a small train_len=32, plus the power of the initial | |
# dynamic loss scale value set to: | |
# "fp16.initial_scale_power": 1 | |
# plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file | |
# but for some reason going to train_len=64 the weights, weights start to mismatch with this setup. | |
# the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical | |
train_len = 64 | |
a = b = 0.0 | |
kwargs = { | |
"a": a, | |
"b": b, | |
"local_rank": 0, | |
"train_len": train_len, | |
"deepspeed": self.get_config_dict(stage), | |
} | |
kwargs[dtype] = True | |
with mockenv_context(**self.dist_env_1_gpu): | |
no_grad_accum_trainer = get_regression_trainer( | |
**kwargs, | |
per_device_train_batch_size=16, | |
gradient_accumulation_steps=1, | |
) | |
no_grad_accum_result = no_grad_accum_trainer.train() | |
no_grad_accum_loss = no_grad_accum_result.training_loss | |
no_grad_accum_a = no_grad_accum_trainer.model.a.item() | |
no_grad_accum_b = no_grad_accum_trainer.model.b.item() | |
# make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger | |
self.assertNotEqual(no_grad_accum_a, a) | |
with mockenv_context(**self.dist_env_1_gpu): | |
yes_grad_accum_trainer = get_regression_trainer( | |
**kwargs, | |
per_device_train_batch_size=4, | |
gradient_accumulation_steps=4, | |
) | |
yes_grad_accum_result = yes_grad_accum_trainer.train() | |
yes_grad_accum_loss = yes_grad_accum_result.training_loss | |
yes_grad_accum_a = yes_grad_accum_trainer.model.a.item() | |
yes_grad_accum_b = yes_grad_accum_trainer.model.b.item() | |
self.assertNotEqual(yes_grad_accum_a, a) | |
# training with half the batch size but accumulation steps as 2 should give the same | |
# weights, but sometimes get a slight difference still of 1e-6 | |
self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5) | |
self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5) | |
# Relative difference. See the note above how to get identical loss on a small bs | |
self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3) | |
def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype): | |
# adapted from TrainerIntegrationCommon.check_saved_checkpoints | |
file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"] | |
if stage == ZERO2: | |
ds_file_list = ["mp_rank_00_model_states.pt"] | |
elif stage == ZERO3: | |
ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"] | |
else: | |
raise ValueError(f"unknown stage {stage}") | |
if dtype == "bf16": | |
ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt") | |
for step in range(freq, total, freq): | |
checkpoint = os.path.join(output_dir, f"checkpoint-{step}") | |
self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found") | |
# common files | |
for filename in file_list: | |
path = os.path.join(checkpoint, filename) | |
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") | |
# ds files | |
ds_path = os.path.join(checkpoint, f"global_step{step}") | |
for filename in ds_file_list: | |
# filename = os.path.join(path, filename) | |
# print(filename) | |
path = os.path.join(ds_path, filename) | |
self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found") | |
def test_save_checkpoints(self, stage, dtype): | |
# adapted from TrainerIntegrationTest.test_save_checkpoints | |
freq = 5 | |
output_dir = self.get_auto_remove_tmp_dir() | |
ds_config_dict = self.get_config_dict(stage) | |
if dtype == FP16: | |
ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step | |
# XXX: | |
if stage == ZERO3: | |
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True | |
# save checkpoints | |
with mockenv_context(**self.dist_env_1_gpu): | |
kwargs = { | |
"output_dir": output_dir, | |
"save_steps": freq, | |
"deepspeed": ds_config_dict, | |
} | |
kwargs[dtype] = True | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train() | |
total = int(self.n_epochs * 64 / self.batch_size) | |
self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype) | |
def test_can_resume_training_errors(self, stage, dtype): | |
with mockenv_context(**self.dist_env_1_gpu): | |
ds_config_dict = self.get_config_dict(stage) | |
output_dir = self.get_auto_remove_tmp_dir() | |
kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict} | |
kwargs[dtype] = True | |
trainer = get_regression_trainer(**kwargs) | |
# 1. fail to find any checkpoint - due a fresh output_dir | |
with self.assertRaises(Exception) as context: | |
trainer.train(resume_from_checkpoint=True) | |
self.assertTrue( | |
"No valid checkpoint found in output directory" in str(context.exception), | |
f"got exception: {context.exception}", | |
) | |
# 2. fail to find a bogus checkpoint | |
with self.assertRaises(Exception) as context: | |
checkpoint = os.path.join(output_dir, "checkpoint-5") | |
trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus") | |
def test_can_resume_training_normal(self, stage, dtype, optim, scheduler): | |
# adapted from TrainerIntegrationTest.test_can_resume_training | |
# test normal resume for each stage separately, error-handling is tested in a different test | |
# ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and | |
# also has same losses for few steps but then slowly diverges. Need to figure it out. | |
if optim == HF_OPTIM and scheduler == HF_SCHEDULER: | |
return | |
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) | |
ds_config_dict = self.get_config_dict(stage) | |
if dtype == FP16: | |
ds_config_dict["fp16"]["initial_scale_power"] = 1 # force optimizer on the first step | |
# XXX: | |
if stage == ZERO3: | |
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True | |
if optim == HF_OPTIM: | |
del ds_config_dict["optimizer"] | |
if scheduler == HF_SCHEDULER: | |
del ds_config_dict["scheduler"] | |
kwargs = { | |
"output_dir": output_dir, | |
"train_len": 128, | |
"save_steps": 5, | |
"learning_rate": 0.1, | |
"deepspeed": ds_config_dict, | |
} | |
kwargs[dtype] = True | |
with mockenv_context(**self.dist_env_1_gpu): | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train() | |
(a, b) = trainer.model.a.item(), trainer.model.b.item() | |
state = dataclasses.asdict(trainer.state) | |
checkpoint = os.path.join(output_dir, "checkpoint-5") | |
# Reinitialize trainer | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train(resume_from_checkpoint=checkpoint) | |
(a1, b1) = trainer.model.a.item(), trainer.model.b.item() | |
state1 = dataclasses.asdict(trainer.state) | |
self.assertEqual(a, a1) | |
self.assertEqual(b, b1) | |
self.check_trainer_state_are_the_same(state, state1) | |
# Now check with a later checkpoint that it also works when we span over one epoch | |
checkpoint = os.path.join(output_dir, "checkpoint-15") | |
# Reinitialize trainer and load model | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train(resume_from_checkpoint=checkpoint) | |
(a1, b1) = trainer.model.a.item(), trainer.model.b.item() | |
state1 = dataclasses.asdict(trainer.state) | |
self.assertEqual(a, a1) | |
self.assertEqual(b, b1) | |
self.check_trainer_state_are_the_same(state, state1) | |
# Finally, should be able to resume with the same trainer/same deepspeed engine instance | |
# XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612 | |
# trainer.train(resume_from_checkpoint=checkpoint) | |
# a workaround needs to be used that re-creates the deepspeed engine | |
def test_load_state_dict_from_zero_checkpoint(self, stage, dtype): | |
# test that we can load fp32 weights directly from the zero checkpoint into the current model | |
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False) | |
ds_config_dict = self.get_config_dict(stage) | |
kwargs = { | |
"output_dir": output_dir, | |
"train_len": 4, | |
"per_device_train_batch_size": 4, | |
"num_train_epochs": 1, | |
"save_strategy": "steps", | |
"save_steps": 1, | |
"learning_rate": 0.1, | |
"deepspeed": ds_config_dict, | |
} | |
kwargs[dtype] = True | |
with mockenv_context(**self.dist_env_1_gpu): | |
trainer = get_regression_trainer(**kwargs) | |
trainer.train() | |
(a, b) = trainer.model.a.item(), trainer.model.b.item() | |
state = dataclasses.asdict(trainer.state) | |
checkpoint_dir = get_last_checkpoint(output_dir) | |
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | |
(a1, b1) = model.a.item(), model.b.item() | |
state1 = dataclasses.asdict(trainer.state) | |
self.assertEqual(a, a1) | |
self.assertEqual(b, b1) | |
self.check_trainer_state_are_the_same(state, state1) | |
def test_config_object(self): | |
# test that we can switch from zero2 to zero3 in the same process for example | |
# test is_zero, etc. | |
output_dir = self.get_auto_remove_tmp_dir() | |
kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True} | |
ds_config_zero3_dict = self.get_config_dict(ZERO3) | |
ds_config_zero2_dict = self.get_config_dict(ZERO2) | |
with mockenv_context(**self.dist_env_1_gpu): | |
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) | |
self.assertTrue(is_deepspeed_zero3_enabled()) | |
# test we can repeat that and with train this time | |
trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs) | |
trainer.train() | |
self.assertTrue(is_deepspeed_zero3_enabled()) | |
# test zero3 is disabled | |
trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs) | |
self.assertFalse(is_deepspeed_zero3_enabled()) | |
# check config obj | |
config = deepspeed_config() | |
self.assertTrue(bool(config), "Deepspeed config should be accessible") | |
# with accelerate integration below line is additionally required for this test to pass | |
trainer.accelerator.state._reset_state() | |
del trainer | |
# now weakref should gc the global and we shouldn't get anything here | |
config = deepspeed_config() | |
self.assertFalse(is_deepspeed_zero3_enabled()) | |
self.assertFalse(bool(config), "Deepspeed config should not be accessible") | |
def test_load_best_model(self, stage, dtype): | |
# Test that forced deepspeed reinit doesn't break the model. the forced re-init after | |
# loading the best model in Trainer is there to workaround this bug in Deepspeed | |
# https://github.com/microsoft/DeepSpeed/issues/1612 | |
# | |
# The test is derived from a repro script submitted in this Issue: | |
# https://github.com/huggingface/transformers/issues/17114 | |
# | |
# One additional feature of this test is that we use a non-AdamW optimizer to test that | |
# deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading | |
# correctly | |
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer # noqa | |
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False, before=False) | |
ds_config_dict = self.get_config_dict(stage) | |
del ds_config_dict["optimizer"] # will use HF Trainer optimizer | |
del ds_config_dict["scheduler"] # will use HF Trainer scheduler | |
ds_config_dict["zero_force_ds_cpu_optimizer"] = False # offload is not efficient w/o CPUAdam | |
# must use this setting to get the reload path exercised | |
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True | |
with mockenv_context(**self.dist_env_1_gpu): | |
args_dict = { | |
"per_device_train_batch_size": 1, | |
"per_device_eval_batch_size": 1, | |
"gradient_accumulation_steps": 1, | |
"learning_rate": 1e-4, | |
"num_train_epochs": 1, | |
"do_train": True, | |
"do_eval": True, | |
"optim": "adafactor", | |
"eval_strategy": "steps", | |
"eval_steps": 1, | |
"save_strategy": "steps", | |
"save_steps": 1, | |
"load_best_model_at_end": True, | |
"max_steps": 1, | |
"deepspeed": ds_config_dict, | |
"report_to": "none", | |
} | |
training_args = TrainingArguments(output_dir, **args_dict) | |
tokenizer = T5Tokenizer.from_pretrained(T5_TINY) | |
model = T5ForConditionalGeneration.from_pretrained(T5_TINY) | |
def _add_eos_to_examples(example): | |
example["input_text"] = f"question: {example['question']} context: {example['context']}" | |
example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else "" | |
return example | |
def _convert_to_features(example_batch): | |
input_encodings = tokenizer.batch_encode_plus( | |
example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True | |
) | |
target_encodings = tokenizer.batch_encode_plus( | |
example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True | |
) | |
encodings = { | |
"input_ids": input_encodings["input_ids"], | |
"attention_mask": input_encodings["attention_mask"], | |
"labels": target_encodings["input_ids"], | |
} | |
return encodings | |
def get_dataset(): | |
data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json") | |
data_files = {"train": data_file, "validation": data_file} | |
raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data") | |
train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True) | |
valid_dataset = deepcopy(train_dataset) | |
return train_dataset, valid_dataset | |
train_dataset, eval_dataset = get_dataset() | |
trainer = Trainer( | |
model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
) | |
trainer.train() # crash 1 was here | |
trainer.evaluate() # crash 2 was here | |
class TestDeepSpeedWithLauncher(TestCasePlus): | |
"""This class is for testing via an external script - can do multiple gpus""" | |
# Tests to devise # | |
# | |
# 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that | |
# the 2 gpus will generate prediction sequences that aren't of the same length - this is because | |
# we had to code a special feature to sync the gpus when the predicted sequences aren't of the | |
# same length. In general this will tested as a side-effect through a variety of other tests - | |
# it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as | |
# long as we have a few full tests running on zero3 + predict_with_generate this should be | |
# mostly covered. | |
# | |
# but there are 5 variations on beam search in `generate`- with identical code branched with `if | |
# synced_gpus` | |
# | |
# 2. most tests should probably be run on both: zero2 and zero3 configs | |
# | |
def test_basic_distributed(self, stage, dtype): | |
self.run_and_check(stage=stage, dtype=dtype, distributed=True) | |
def test_do_eval_no_train(self): | |
# testing only zero3 since zero2 makes no sense with inference | |
self.run_and_check( | |
stage=ZERO3, | |
dtype=FP16, | |
eval_steps=1, | |
distributed=False, | |
do_train=False, | |
do_eval=True, | |
) | |
def test_fp32_non_distributed(self, stage, dtype): | |
# real model needs too much GPU memory under stage2+fp32, so using tiny random model here - | |
# therefore no quality checks, just basic completion checks are done | |
self.run_and_check( | |
stage=stage, | |
dtype=dtype, | |
model_name=T5_TINY, | |
distributed=False, | |
do_train=True, | |
do_eval=True, | |
quality_checks=False, | |
fp32=True, | |
) | |
def test_fp32_distributed(self, stage, dtype): | |
# real model needs too much GPU memory under stage2+fp32, so using tiny random model here - | |
# therefore no quality checks, just basic completion checks are done | |
self.run_and_check( | |
stage=stage, | |
dtype=dtype, | |
model_name=T5_TINY, | |
distributed=True, | |
do_train=True, | |
do_eval=True, | |
quality_checks=False, | |
fp32=True, | |
) | |
def test_resume_train_not_from_ds_checkpoint(self, stage, dtype): | |
# do normal training and then resume not from the deepspeed checkpoint but explicitly from | |
# the saved model dir | |
do_train = True | |
do_eval = False | |
kwargs = { | |
"stage": stage, | |
"dtype": dtype, | |
"eval_steps": 1, | |
"distributed": True, | |
"do_train": do_train, | |
"do_eval": do_eval, | |
} | |
# 1. normal training | |
output_dir = self.run_and_check(**kwargs) | |
# 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir | |
# - i.e. the same path the model was saved to in step 1 | |
output_dir = self.run_trainer(**kwargs, model_name=output_dir) | |
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval) | |
def test_inference(self, dtype): | |
if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device): | |
self.skipTest("test requires bfloat16 hardware support") | |
# this is just inference, so no optimizer should be loaded | |
# it only works for z3 (makes no sense with z1-z2) | |
fp32 = True if dtype == "fp32" else False | |
self.run_and_check( | |
stage=ZERO3, | |
dtype=FP16, | |
model_name=T5_TINY, | |
distributed=True, | |
do_train=False, | |
do_eval=True, | |
quality_checks=False, | |
fp32=fp32, | |
) | |
def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True): | |
if do_train: | |
train_metrics = load_json(os.path.join(output_dir, "train_results.json")) | |
self.assertIn("train_samples_per_second", train_metrics) | |
if quality_checks: | |
self.assertGreater(train_metrics["train_samples_per_second"], 0.5) | |
if do_eval: | |
eval_metrics = load_json(os.path.join(output_dir, "eval_results.json")) | |
self.assertIn("eval_bleu", eval_metrics) | |
if quality_checks: | |
self.assertGreater(eval_metrics["eval_bleu"], 1) | |
# XXX: need to do better validation beyond just that the run was successful | |
def run_and_check( | |
self, | |
stage, | |
dtype, | |
model_name: str = T5_SMALL, | |
eval_steps: int = 10, | |
distributed: bool = True, | |
do_train: bool = True, | |
do_eval: bool = True, | |
quality_checks: bool = True, | |
fp32: bool = False, | |
extra_args_str: str = None, | |
remove_args_str: str = None, | |
): | |
# we are doing quality testing so using a small real model | |
output_dir = self.run_trainer( | |
stage=stage, | |
dtype=dtype, | |
model_name=model_name, | |
eval_steps=eval_steps, | |
num_train_epochs=1, | |
do_train=do_train, | |
do_eval=do_eval, | |
distributed=distributed, | |
fp32=fp32, | |
extra_args_str=extra_args_str, | |
remove_args_str=remove_args_str, | |
) | |
self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks) | |
return output_dir | |
def run_trainer( | |
self, | |
stage: str, | |
dtype: str, | |
model_name: str, | |
eval_steps: int = 10, | |
num_train_epochs: int = 1, | |
do_train: bool = False, | |
do_eval: bool = True, | |
distributed: bool = True, | |
fp32: bool = False, | |
extra_args_str: str = None, | |
remove_args_str: str = None, | |
): | |
max_len = 32 | |
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" | |
output_dir = self.get_auto_remove_tmp_dir() | |
args = f""" | |
--model_name_or_path {model_name} | |
--train_file {data_dir}/train.json | |
--validation_file {data_dir}/val.json | |
--output_dir {output_dir} | |
--overwrite_output_dir | |
--max_source_length {max_len} | |
--max_target_length {max_len} | |
--val_max_target_length {max_len} | |
--warmup_steps 8 | |
--predict_with_generate | |
--save_steps 0 | |
--eval_steps {eval_steps} | |
--group_by_length | |
--label_smoothing_factor 0.1 | |
--source_lang en | |
--target_lang ro | |
--report_to none | |
""".split() | |
args.extend(["--source_prefix", '"translate English to Romanian: "']) | |
if not fp32: | |
args.extend([f"--{dtype}"]) | |
actions = 0 | |
if do_train: | |
actions += 1 | |
args.extend( | |
f""" | |
--do_train | |
--num_train_epochs {str(num_train_epochs)} | |
--max_train_samples 16 | |
--per_device_train_batch_size 2 | |
--learning_rate 3e-3 | |
""".split() | |
) | |
if do_eval: | |
actions += 1 | |
args.extend( | |
""" | |
--do_eval | |
--max_eval_samples 16 | |
--per_device_eval_batch_size 2 | |
""".split() | |
) | |
assert actions > 0, "need at least do_train or do_eval for the test to run" | |
if extra_args_str is not None: | |
args.extend(extra_args_str.split()) | |
# currently only works for bool args | |
if remove_args_str is not None: | |
remove_args = remove_args_str.split() | |
args = [x for x in args if x not in remove_args] | |
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() | |
script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"] | |
launcher = get_launcher(distributed) | |
cmd = launcher + script + args + ds_args | |
# keep for quick debug | |
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
execute_subprocess_async(cmd, env=self.get_env()) | |
return output_dir | |
def test_clm(self, stage, dtype): | |
# this test exercises model.resize_token_embeddings() which requires param gathering outside | |
# of forward - it's not used by `run_translation.py`, but it is in `run_clm.py` | |
data_dir = self.tests_dir / "fixtures" | |
output_dir = self.get_auto_remove_tmp_dir() | |
args = f""" | |
--model_name_or_path {GPT2_TINY} | |
--train_file {data_dir}/sample_text.txt | |
--validation_file {data_dir}/sample_text.txt | |
--output_dir {output_dir} | |
--overwrite_output_dir | |
--do_train | |
--do_eval | |
--max_train_samples 16 | |
--max_eval_samples 16 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 2 | |
--num_train_epochs 1 | |
--warmup_steps 8 | |
--block_size 64 | |
--report_to none | |
""".split() | |
args.extend([f"--{dtype}"]) | |
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split() | |
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] | |
launcher = get_launcher(distributed=True) | |
cmd = launcher + script + args + ds_args | |
# keep for quick debug | |
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
execute_subprocess_async(cmd, env=self.get_env()) | |
def test_clm_from_config_zero3_fp16(self): | |
# this test exercises AutoModel.from_config(config) - to ensure zero.Init is called | |
data_dir = self.tests_dir / "fixtures" | |
output_dir = self.get_auto_remove_tmp_dir() | |
args = f""" | |
--model_type gpt2 | |
--tokenizer_name {GPT2_TINY} | |
--train_file {data_dir}/sample_text.txt | |
--validation_file {data_dir}/sample_text.txt | |
--output_dir {output_dir} | |
--overwrite_output_dir | |
--do_train | |
--max_train_samples 4 | |
--per_device_train_batch_size 2 | |
--num_train_epochs 1 | |
--warmup_steps 8 | |
--block_size 8 | |
--fp16 | |
--report_to none | |
""".split() | |
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split() | |
script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"] | |
launcher = get_launcher(distributed=True) | |
cmd = launcher + script + args + ds_args | |
# keep for quick debug | |
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
with CaptureStderr() as cs: | |
execute_subprocess_async(cmd, env=self.get_env()) | |
self.assertIn("Detected DeepSpeed ZeRO-3", cs.err) | |