flaskapp / src /feature_analyzer.py
OVH
Added all the files
67b1c6c
raw
history blame
10.7 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from loguru import logger
class FeatureAnalyzer:
def __init__(self,df,output_path):
self.df=df
self.output_path=output_path
def plot_correlation_heatmap(self):
Path(self.output_path).mkdir(parents=True, exist_ok=True)
numeric_cols = self.df.select_dtypes(include=[np.number]).columns.drop('fake')
correlation_matrix = self.df[numeric_cols].corr()
plt.figure(figsize=(14, 12))
sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', vmin=-1, vmax=1, center=0)
plt.title('Correlation Heatmap of Numeric Features', fontsize=16)
plt.tight_layout()
output_file = Path(self.output_path) / 'correlation_heatmap.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved correlation heatmap to {output_file}")
def plot_mean_by_fake_bar(self):
key_features = [
'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
'time_since_last_review_user', 'user_account_age', 'pronoun_density',
'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
]
Path(self.output_path).mkdir(parents=True, exist_ok=True)
mean_by_fake = self.df.groupby('fake')[key_features].mean().T
mean_by_fake.columns = ['Genuine (0)', 'Fake (1)']
plt.figure(figsize=(12, 8))
mean_by_fake.plot(kind='bar', color=['skyblue', 'salmon'], width=0.8)
plt.title('Mean Feature Values by Fake Label', fontsize=16)
plt.xlabel('Features', fontsize=12)
plt.ylabel('Mean Value', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.legend(title='Fake Label')
plt.tight_layout()
output_file = Path(self.output_path) / 'mean_by_fake_bar.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved mean by fake bar plot to {output_file}")
def plot_violin_plots(self):
key_features = [
'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
'time_since_last_review_user', 'user_account_age', 'pronoun_density',
'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
]
Path(self.output_path).mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(14, 10))
for i, feature in enumerate(key_features[:6], 1):
plt.subplot(2, 3, i)
sns.violinplot(x='fake', y=feature, data=self.df, palette=['skyblue', 'salmon'])
plt.title(f'{feature} Distribution', fontsize=12)
plt.xlabel('Fake (0/1)', fontsize=10)
plt.tight_layout()
output_file = Path(self.output_path) / 'violin_plots.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved violin plots to {output_file}")
def plot_box_plots(self):
key_features = [
'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
'time_since_last_review_user', 'user_account_age', 'pronoun_density',
'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
]
Path(self.output_path).mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(14, 10))
for i, feature in enumerate(key_features[6:11], 1):
plt.subplot(2, 3, i)
sns.boxplot(x='fake', y=feature, data=self.df, palette=['skyblue', 'salmon'])
plt.title(f'{feature} Distribution', fontsize=12)
plt.xlabel('Fake (0/1)', fontsize=10)
plt.tight_layout()
output_file = Path(self.output_path) / 'box_plots.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved box plots to {output_file}")
def plot_scatter_review_grammar(self):
Path(self.output_path).mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(10, 6))
sns.scatterplot(x='review_stars', y='grammar_error_score', hue='fake', data=self.df, palette=['blue', 'red'], alpha=0.5)
plt.title('Review Stars vs Grammar Error Score by Fake Label', fontsize=16)
plt.xlabel('Review Stars', fontsize=12)
plt.ylabel('Grammar Error Score', fontsize=12)
plt.legend(title='Fake')
plt.tight_layout()
output_file = Path(self.output_path) / 'scatter_review_grammar.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved scatter plot to {output_file}")
def plot_density_plots(self):
key_features = [
'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
'time_since_last_review_user', 'user_account_age', 'pronoun_density',
'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
]
Path(self.output_path).mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(14, 10))
for i, feature in enumerate(key_features[:4], 1):
plt.subplot(2, 2, i)
for label in [0, 1]:
subset = self.df[self.df['fake'] == label]
sns.kdeplot(subset[feature], label=f'Fake={label}', fill=True, alpha=0.5)
plt.title(f'{feature} Density', fontsize=12)
plt.xlabel(feature, fontsize=10)
plt.legend()
plt.tight_layout()
output_file = Path(self.output_path) / 'density_plots.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved density plots to {output_file}")
def plot_stacked_bar_similarity(self):
Path(self.output_path).mkdir(parents=True, exist_ok=True)
bins = pd.cut(self.df['similarity_to_other_reviews'], bins=10)
stacked_data = self.df.groupby([bins, 'fake']).size().unstack(fill_value=0)
stacked_data = stacked_data.div(stacked_data.sum(axis=1), axis=0)
plt.figure(figsize=(12, 8))
stacked_data.plot(kind='bar', stacked=True, color=['skyblue', 'salmon'], width=0.8)
plt.title('Proportion of Fake by Similarity to Other Reviews Bins', fontsize=16)
plt.xlabel('Similarity Bins', fontsize=12)
plt.ylabel('Proportion', fontsize=12)
plt.legend(['Genuine (0)', 'Fake (1)'], title='Fake Label')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
output_file = Path(self.output_path) / 'stacked_bar_similarity.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved stacked bar plot to {output_file}")
def plot_pie_fake_distribution(self):
Path(self.output_path).mkdir(parents=True, exist_ok=True)
fake_counts = self.df['fake'].value_counts()
plt.figure(figsize=(8, 8))
plt.pie(fake_counts, labels=['Genuine (0)', 'Fake (1)'], colors=['skyblue', 'salmon'], autopct='%1.1f%%', startangle=90)
plt.title('Distribution of Fake Labels', fontsize=16)
plt.axis('equal')
output_file = Path(self.output_path) / 'pie_fake_distribution.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved pie chart to {output_file}")
def plot_count_code_switching(self):
Path(self.output_path).mkdir(parents=True, exist_ok=True)
plt.figure(figsize=(8, 6))
sns.countplot(x='code_switching_flag', hue='fake', data=self.df, palette=['skyblue', 'salmon'])
plt.title('Count of Fake by Code Switching Flag', fontsize=16)
plt.xlabel('Code Switching Flag (0/1)', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.legend(title='Fake Label')
plt.tight_layout()
output_file = Path(self.output_path) / 'count_code_switching.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved count plot to {output_file}")
def plot_variance_by_fake_bar(self):
key_features = [
'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
'time_since_last_review_user', 'user_account_age', 'pronoun_density',
'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
]
Path(self.output_path).mkdir(parents=True, exist_ok=True)
variance_by_fake = self.df.groupby('fake')[key_features].var().T
variance_by_fake.columns = ['Genuine (0)', 'Fake (1)']
plt.figure(figsize=(12, 8))
variance_by_fake.plot(kind='bar', color=['skyblue', 'salmon'], width=0.8)
plt.title('Feature Variance by Fake Label', fontsize=16)
plt.xlabel('Features', fontsize=12)
plt.ylabel('Variance', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.legend(title='Fake Label')
plt.tight_layout()
output_file = Path(self.output_path) / 'variance_by_fake_bar.png'
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Saved variance bar plot to {output_file}")
def run_pipeline(self):
sns.set(style="whitegrid")
plt.rcParams['figure.figsize'] = (12, 8)
self.plot_correlation_heatmap()
self.plot_mean_by_fake_bar()
self.plot_violin_plots()
self.plot_box_plots()
self.plot_scatter_review_grammar()
self.plot_density_plots()
self.plot_stacked_bar_similarity()
self.plot_pie_fake_distribution()
self.plot_count_code_switching()
self.plot_variance_by_fake_bar()