Spaces:
Starting
on
L40S
Starting
on
L40S
Upload 13 files
Browse files- mvadapter/__init__.py +0 -0
- mvadapter/loaders/__init__.py +1 -0
- mvadapter/loaders/custom_adapter.py +98 -0
- mvadapter/models/__init__.py +0 -0
- mvadapter/models/attention_processor.py +373 -0
- mvadapter/pipelines/pipeline_mvadapter_i2mv_sdxl.py +953 -0
- mvadapter/pipelines/pipeline_mvadapter_t2mv_sdxl.py +792 -0
- mvadapter/schedulers/scheduler_utils.py +70 -0
- mvadapter/schedulers/scheduling_shift_snr.py +138 -0
- mvadapter/utils/__init__.py +3 -0
- mvadapter/utils/camera.py +213 -0
- mvadapter/utils/geometry.py +253 -0
- mvadapter/utils/saving.py +88 -0
mvadapter/__init__.py
ADDED
File without changes
|
mvadapter/loaders/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .custom_adapter import CustomAdapterMixin
|
mvadapter/loaders/custom_adapter.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
|
4 |
+
import safetensors
|
5 |
+
import torch
|
6 |
+
from diffusers.utils import _get_model_file, logging
|
7 |
+
from safetensors import safe_open
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
10 |
+
|
11 |
+
|
12 |
+
class CustomAdapterMixin:
|
13 |
+
def init_custom_adapter(self, *args, **kwargs):
|
14 |
+
self._init_custom_adapter(*args, **kwargs)
|
15 |
+
|
16 |
+
def _init_custom_adapter(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
def load_custom_adapter(
|
20 |
+
self,
|
21 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
22 |
+
weight_name: str,
|
23 |
+
subfolder: Optional[str] = None,
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
# Load the main state dict first.
|
27 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
28 |
+
force_download = kwargs.pop("force_download", False)
|
29 |
+
proxies = kwargs.pop("proxies", None)
|
30 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
31 |
+
token = kwargs.pop("token", None)
|
32 |
+
revision = kwargs.pop("revision", None)
|
33 |
+
|
34 |
+
user_agent = {
|
35 |
+
"file_type": "attn_procs_weights",
|
36 |
+
"framework": "pytorch",
|
37 |
+
}
|
38 |
+
|
39 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
40 |
+
model_file = _get_model_file(
|
41 |
+
pretrained_model_name_or_path_or_dict,
|
42 |
+
weights_name=weight_name,
|
43 |
+
subfolder=subfolder,
|
44 |
+
cache_dir=cache_dir,
|
45 |
+
force_download=force_download,
|
46 |
+
proxies=proxies,
|
47 |
+
local_files_only=local_files_only,
|
48 |
+
token=token,
|
49 |
+
revision=revision,
|
50 |
+
user_agent=user_agent,
|
51 |
+
)
|
52 |
+
if weight_name.endswith(".safetensors"):
|
53 |
+
state_dict = {}
|
54 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
55 |
+
for key in f.keys():
|
56 |
+
state_dict[key] = f.get_tensor(key)
|
57 |
+
else:
|
58 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
59 |
+
else:
|
60 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
61 |
+
|
62 |
+
self._load_custom_adapter(state_dict)
|
63 |
+
|
64 |
+
def _load_custom_adapter(self, state_dict):
|
65 |
+
raise NotImplementedError
|
66 |
+
|
67 |
+
def save_custom_adapter(
|
68 |
+
self,
|
69 |
+
save_directory: Union[str, os.PathLike],
|
70 |
+
weight_name: str,
|
71 |
+
safe_serialization: bool = False,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
if os.path.isfile(save_directory):
|
75 |
+
logger.error(
|
76 |
+
f"Provided path ({save_directory}) should be a directory, not a file"
|
77 |
+
)
|
78 |
+
return
|
79 |
+
|
80 |
+
if safe_serialization:
|
81 |
+
|
82 |
+
def save_function(weights, filename):
|
83 |
+
return safetensors.torch.save_file(
|
84 |
+
weights, filename, metadata={"format": "pt"}
|
85 |
+
)
|
86 |
+
|
87 |
+
else:
|
88 |
+
save_function = torch.save
|
89 |
+
|
90 |
+
# Save the model
|
91 |
+
state_dict = self._save_custom_adapter(**kwargs)
|
92 |
+
save_function(state_dict, os.path.join(save_directory, weight_name))
|
93 |
+
logger.info(
|
94 |
+
f"Custom adapter weights saved in {os.path.join(save_directory, weight_name)}"
|
95 |
+
)
|
96 |
+
|
97 |
+
def _save_custom_adapter(self):
|
98 |
+
raise NotImplementedError
|
mvadapter/models/__init__.py
ADDED
File without changes
|
mvadapter/models/attention_processor.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Callable, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from diffusers.models.attention_processor import Attention
|
7 |
+
from diffusers.models.unets import UNet2DConditionModel
|
8 |
+
from diffusers.utils import deprecate, logging
|
9 |
+
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
|
10 |
+
from einops import rearrange
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
|
14 |
+
def default_set_attn_proc_func(
|
15 |
+
name: str,
|
16 |
+
hidden_size: int,
|
17 |
+
cross_attention_dim: Optional[int],
|
18 |
+
ori_attn_proc: object,
|
19 |
+
) -> object:
|
20 |
+
return ori_attn_proc
|
21 |
+
|
22 |
+
|
23 |
+
def set_unet_2d_condition_attn_processor(
|
24 |
+
unet: UNet2DConditionModel,
|
25 |
+
set_self_attn_proc_func: Callable = default_set_attn_proc_func,
|
26 |
+
set_cross_attn_proc_func: Callable = default_set_attn_proc_func,
|
27 |
+
set_custom_attn_proc_func: Callable = default_set_attn_proc_func,
|
28 |
+
set_self_attn_module_names: Optional[List[str]] = None,
|
29 |
+
set_cross_attn_module_names: Optional[List[str]] = None,
|
30 |
+
set_custom_attn_module_names: Optional[List[str]] = None,
|
31 |
+
) -> None:
|
32 |
+
do_set_processor = lambda name, module_names: (
|
33 |
+
any([name.startswith(module_name) for module_name in module_names])
|
34 |
+
if module_names is not None
|
35 |
+
else True
|
36 |
+
) # prefix match
|
37 |
+
|
38 |
+
attn_procs = {}
|
39 |
+
for name, attn_processor in unet.attn_processors.items():
|
40 |
+
# set attn_processor by default, if module_names is None
|
41 |
+
set_self_attn_processor = do_set_processor(name, set_self_attn_module_names)
|
42 |
+
set_cross_attn_processor = do_set_processor(name, set_cross_attn_module_names)
|
43 |
+
set_custom_attn_processor = do_set_processor(name, set_custom_attn_module_names)
|
44 |
+
|
45 |
+
if name.startswith("mid_block"):
|
46 |
+
hidden_size = unet.config.block_out_channels[-1]
|
47 |
+
elif name.startswith("up_blocks"):
|
48 |
+
block_id = int(name[len("up_blocks.")])
|
49 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
50 |
+
elif name.startswith("down_blocks"):
|
51 |
+
block_id = int(name[len("down_blocks.")])
|
52 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
53 |
+
|
54 |
+
is_custom = "attn_mid_blocks" in name or "attn_post_blocks" in name
|
55 |
+
if is_custom:
|
56 |
+
attn_procs[name] = (
|
57 |
+
set_custom_attn_proc_func(name, hidden_size, None, attn_processor)
|
58 |
+
if set_custom_attn_processor
|
59 |
+
else attn_processor
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
cross_attention_dim = (
|
63 |
+
None
|
64 |
+
if name.endswith("attn1.processor")
|
65 |
+
else unet.config.cross_attention_dim
|
66 |
+
)
|
67 |
+
if cross_attention_dim is None or "motion_modules" in name:
|
68 |
+
# self attention
|
69 |
+
attn_procs[name] = (
|
70 |
+
set_self_attn_proc_func(
|
71 |
+
name, hidden_size, cross_attention_dim, attn_processor
|
72 |
+
)
|
73 |
+
if set_self_attn_processor
|
74 |
+
else attn_processor
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
# cross attention
|
78 |
+
attn_procs[name] = (
|
79 |
+
set_cross_attn_proc_func(
|
80 |
+
name, hidden_size, cross_attention_dim, attn_processor
|
81 |
+
)
|
82 |
+
if set_cross_attn_processor
|
83 |
+
else attn_processor
|
84 |
+
)
|
85 |
+
|
86 |
+
unet.set_attn_processor(attn_procs)
|
87 |
+
|
88 |
+
|
89 |
+
class DecoupledMVRowSelfAttnProcessor2_0(torch.nn.Module):
|
90 |
+
r"""
|
91 |
+
Attention processor for Decoupled Row-wise Self-Attention and Image Cross-Attention for PyTorch 2.0.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
query_dim: int,
|
97 |
+
inner_dim: int,
|
98 |
+
num_views: int = 1,
|
99 |
+
name: Optional[str] = None,
|
100 |
+
use_mv: bool = True,
|
101 |
+
use_ref: bool = False,
|
102 |
+
):
|
103 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
104 |
+
raise ImportError(
|
105 |
+
"DecoupledMVRowSelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
106 |
+
)
|
107 |
+
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.num_views = num_views
|
111 |
+
self.name = name # NOTE: need for image cross-attention
|
112 |
+
self.use_mv = use_mv
|
113 |
+
self.use_ref = use_ref
|
114 |
+
|
115 |
+
if self.use_mv:
|
116 |
+
self.to_q_mv = nn.Linear(
|
117 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
118 |
+
)
|
119 |
+
self.to_k_mv = nn.Linear(
|
120 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
121 |
+
)
|
122 |
+
self.to_v_mv = nn.Linear(
|
123 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
124 |
+
)
|
125 |
+
self.to_out_mv = nn.ModuleList(
|
126 |
+
[
|
127 |
+
nn.Linear(in_features=inner_dim, out_features=query_dim, bias=True),
|
128 |
+
nn.Dropout(0.0),
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
if self.use_ref:
|
133 |
+
self.to_q_ref = nn.Linear(
|
134 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
135 |
+
)
|
136 |
+
self.to_k_ref = nn.Linear(
|
137 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
138 |
+
)
|
139 |
+
self.to_v_ref = nn.Linear(
|
140 |
+
in_features=query_dim, out_features=inner_dim, bias=False
|
141 |
+
)
|
142 |
+
self.to_out_ref = nn.ModuleList(
|
143 |
+
[
|
144 |
+
nn.Linear(in_features=inner_dim, out_features=query_dim, bias=True),
|
145 |
+
nn.Dropout(0.0),
|
146 |
+
]
|
147 |
+
)
|
148 |
+
|
149 |
+
def __call__(
|
150 |
+
self,
|
151 |
+
attn: Attention,
|
152 |
+
hidden_states: torch.FloatTensor,
|
153 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
154 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
155 |
+
temb: Optional[torch.FloatTensor] = None,
|
156 |
+
mv_scale: float = 1.0,
|
157 |
+
ref_hidden_states: Optional[torch.FloatTensor] = None,
|
158 |
+
ref_scale: float = 1.0,
|
159 |
+
cache_hidden_states: Optional[List[torch.FloatTensor]] = None,
|
160 |
+
use_mv: bool = True,
|
161 |
+
use_ref: bool = True,
|
162 |
+
*args,
|
163 |
+
**kwargs,
|
164 |
+
) -> torch.FloatTensor:
|
165 |
+
"""
|
166 |
+
New args:
|
167 |
+
mv_scale (float): scale for multi-view self-attention.
|
168 |
+
ref_hidden_states (torch.FloatTensor): reference encoder hidden states for image cross-attention.
|
169 |
+
ref_scale (float): scale for image cross-attention.
|
170 |
+
cache_hidden_states (List[torch.FloatTensor]): cache hidden states from reference unet.
|
171 |
+
|
172 |
+
"""
|
173 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
174 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
175 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
176 |
+
|
177 |
+
# NEW: cache hidden states for reference unet
|
178 |
+
if cache_hidden_states is not None:
|
179 |
+
cache_hidden_states[self.name] = hidden_states.clone()
|
180 |
+
|
181 |
+
# NEW: whether to use multi-view attention and image cross-attention
|
182 |
+
use_mv = self.use_mv and use_mv
|
183 |
+
use_ref = self.use_ref and use_ref
|
184 |
+
|
185 |
+
residual = hidden_states
|
186 |
+
if attn.spatial_norm is not None:
|
187 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
188 |
+
|
189 |
+
input_ndim = hidden_states.ndim
|
190 |
+
|
191 |
+
if input_ndim == 4:
|
192 |
+
batch_size, channel, height, width = hidden_states.shape
|
193 |
+
hidden_states = hidden_states.view(
|
194 |
+
batch_size, channel, height * width
|
195 |
+
).transpose(1, 2)
|
196 |
+
|
197 |
+
batch_size, sequence_length, _ = (
|
198 |
+
hidden_states.shape
|
199 |
+
if encoder_hidden_states is None
|
200 |
+
else encoder_hidden_states.shape
|
201 |
+
)
|
202 |
+
|
203 |
+
if attention_mask is not None:
|
204 |
+
attention_mask = attn.prepare_attention_mask(
|
205 |
+
attention_mask, sequence_length, batch_size
|
206 |
+
)
|
207 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
208 |
+
# (batch, heads, source_length, target_length)
|
209 |
+
attention_mask = attention_mask.view(
|
210 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if attn.group_norm is not None:
|
214 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
215 |
+
1, 2
|
216 |
+
)
|
217 |
+
|
218 |
+
query = attn.to_q(hidden_states)
|
219 |
+
|
220 |
+
# NEW: for decoupled multi-view attention
|
221 |
+
if use_mv:
|
222 |
+
query_mv = self.to_q_mv(hidden_states)
|
223 |
+
|
224 |
+
# NEW: for decoupled reference cross attention
|
225 |
+
if use_ref:
|
226 |
+
query_ref = self.to_q_ref(hidden_states)
|
227 |
+
|
228 |
+
if encoder_hidden_states is None:
|
229 |
+
encoder_hidden_states = hidden_states
|
230 |
+
elif attn.norm_cross:
|
231 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
232 |
+
encoder_hidden_states
|
233 |
+
)
|
234 |
+
|
235 |
+
key = attn.to_k(encoder_hidden_states)
|
236 |
+
value = attn.to_v(encoder_hidden_states)
|
237 |
+
|
238 |
+
inner_dim = key.shape[-1]
|
239 |
+
head_dim = inner_dim // attn.heads
|
240 |
+
|
241 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
242 |
+
|
243 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
244 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
245 |
+
|
246 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
247 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
248 |
+
hidden_states = F.scaled_dot_product_attention(
|
249 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
250 |
+
)
|
251 |
+
|
252 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
253 |
+
batch_size, -1, attn.heads * head_dim
|
254 |
+
)
|
255 |
+
hidden_states = hidden_states.to(query.dtype)
|
256 |
+
|
257 |
+
####### Decoupled multi-view self-attention ########
|
258 |
+
if use_mv:
|
259 |
+
key_mv = self.to_k_mv(encoder_hidden_states)
|
260 |
+
value_mv = self.to_v_mv(encoder_hidden_states)
|
261 |
+
|
262 |
+
query_mv = query_mv.view(batch_size, -1, attn.heads, head_dim)
|
263 |
+
key_mv = key_mv.view(batch_size, -1, attn.heads, head_dim)
|
264 |
+
value_mv = value_mv.view(batch_size, -1, attn.heads, head_dim)
|
265 |
+
|
266 |
+
height = width = math.isqrt(sequence_length)
|
267 |
+
|
268 |
+
# row self-attention
|
269 |
+
query_mv = rearrange(
|
270 |
+
query_mv,
|
271 |
+
"(b nv) (ih iw) h c -> (b nv ih) iw h c",
|
272 |
+
nv=self.num_views,
|
273 |
+
ih=height,
|
274 |
+
iw=width,
|
275 |
+
).transpose(1, 2)
|
276 |
+
key_mv = rearrange(
|
277 |
+
key_mv,
|
278 |
+
"(b nv) (ih iw) h c -> b ih (nv iw) h c",
|
279 |
+
nv=self.num_views,
|
280 |
+
ih=height,
|
281 |
+
iw=width,
|
282 |
+
)
|
283 |
+
key_mv = (
|
284 |
+
key_mv.repeat_interleave(self.num_views, dim=0)
|
285 |
+
.view(batch_size * height, -1, attn.heads, head_dim)
|
286 |
+
.transpose(1, 2)
|
287 |
+
)
|
288 |
+
value_mv = rearrange(
|
289 |
+
value_mv,
|
290 |
+
"(b nv) (ih iw) h c -> b ih (nv iw) h c",
|
291 |
+
nv=self.num_views,
|
292 |
+
ih=height,
|
293 |
+
iw=width,
|
294 |
+
)
|
295 |
+
value_mv = (
|
296 |
+
value_mv.repeat_interleave(self.num_views, dim=0)
|
297 |
+
.view(batch_size * height, -1, attn.heads, head_dim)
|
298 |
+
.transpose(1, 2)
|
299 |
+
)
|
300 |
+
|
301 |
+
hidden_states_mv = F.scaled_dot_product_attention(
|
302 |
+
query_mv,
|
303 |
+
key_mv,
|
304 |
+
value_mv,
|
305 |
+
dropout_p=0.0,
|
306 |
+
is_causal=False,
|
307 |
+
)
|
308 |
+
hidden_states_mv = rearrange(
|
309 |
+
hidden_states_mv,
|
310 |
+
"(b nv ih) h iw c -> (b nv) (ih iw) (h c)",
|
311 |
+
nv=self.num_views,
|
312 |
+
ih=height,
|
313 |
+
)
|
314 |
+
hidden_states_mv = hidden_states_mv.to(query.dtype)
|
315 |
+
|
316 |
+
# linear proj
|
317 |
+
hidden_states_mv = self.to_out_mv[0](hidden_states_mv)
|
318 |
+
# dropout
|
319 |
+
hidden_states_mv = self.to_out_mv[1](hidden_states_mv)
|
320 |
+
|
321 |
+
if use_ref:
|
322 |
+
reference_hidden_states = ref_hidden_states[self.name]
|
323 |
+
|
324 |
+
key_ref = self.to_k_ref(reference_hidden_states)
|
325 |
+
value_ref = self.to_v_ref(reference_hidden_states)
|
326 |
+
|
327 |
+
query_ref = query_ref.view(batch_size, -1, attn.heads, head_dim).transpose(
|
328 |
+
1, 2
|
329 |
+
)
|
330 |
+
key_ref = key_ref.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
331 |
+
value_ref = value_ref.view(batch_size, -1, attn.heads, head_dim).transpose(
|
332 |
+
1, 2
|
333 |
+
)
|
334 |
+
|
335 |
+
hidden_states_ref = F.scaled_dot_product_attention(
|
336 |
+
query_ref, key_ref, value_ref, dropout_p=0.0, is_causal=False
|
337 |
+
)
|
338 |
+
|
339 |
+
hidden_states_ref = hidden_states_ref.transpose(1, 2).reshape(
|
340 |
+
batch_size, -1, attn.heads * head_dim
|
341 |
+
)
|
342 |
+
hidden_states_ref = hidden_states_ref.to(query.dtype)
|
343 |
+
|
344 |
+
# linear proj
|
345 |
+
hidden_states_ref = self.to_out_ref[0](hidden_states_ref)
|
346 |
+
# dropout
|
347 |
+
hidden_states_ref = self.to_out_ref[1](hidden_states_ref)
|
348 |
+
|
349 |
+
# linear proj
|
350 |
+
hidden_states = attn.to_out[0](hidden_states)
|
351 |
+
# dropout
|
352 |
+
hidden_states = attn.to_out[1](hidden_states)
|
353 |
+
|
354 |
+
if use_mv:
|
355 |
+
hidden_states = hidden_states + hidden_states_mv * mv_scale
|
356 |
+
|
357 |
+
if use_ref:
|
358 |
+
hidden_states = hidden_states + hidden_states_ref * ref_scale
|
359 |
+
|
360 |
+
if input_ndim == 4:
|
361 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
362 |
+
batch_size, channel, height, width
|
363 |
+
)
|
364 |
+
|
365 |
+
if attn.residual_connection:
|
366 |
+
hidden_states = hidden_states + residual
|
367 |
+
|
368 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
369 |
+
|
370 |
+
return hidden_states
|
371 |
+
|
372 |
+
def set_num_views(self, num_views: int) -> None:
|
373 |
+
self.num_views = num_views
|
mvadapter/pipelines/pipeline_mvadapter_i2mv_sdxl.py
ADDED
@@ -0,0 +1,953 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
23 |
+
from diffusers.models import (
|
24 |
+
AutoencoderKL,
|
25 |
+
ImageProjection,
|
26 |
+
T2IAdapter,
|
27 |
+
UNet2DConditionModel,
|
28 |
+
)
|
29 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
|
30 |
+
StableDiffusionXLPipelineOutput,
|
31 |
+
)
|
32 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
|
33 |
+
StableDiffusionXLPipeline,
|
34 |
+
rescale_noise_cfg,
|
35 |
+
retrieve_timesteps,
|
36 |
+
)
|
37 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
38 |
+
from diffusers.utils import deprecate, logging
|
39 |
+
from diffusers.utils.torch_utils import randn_tensor
|
40 |
+
from einops import rearrange
|
41 |
+
from transformers import (
|
42 |
+
CLIPImageProcessor,
|
43 |
+
CLIPTextModel,
|
44 |
+
CLIPTextModelWithProjection,
|
45 |
+
CLIPTokenizer,
|
46 |
+
CLIPVisionModelWithProjection,
|
47 |
+
)
|
48 |
+
|
49 |
+
from ..loaders import CustomAdapterMixin
|
50 |
+
from ..models.attention_processor import (
|
51 |
+
DecoupledMVRowSelfAttnProcessor2_0,
|
52 |
+
set_unet_2d_condition_attn_processor,
|
53 |
+
)
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
def retrieve_latents(
|
59 |
+
encoder_output: torch.Tensor,
|
60 |
+
generator: Optional[torch.Generator] = None,
|
61 |
+
sample_mode: str = "sample",
|
62 |
+
):
|
63 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
64 |
+
return encoder_output.latent_dist.sample(generator)
|
65 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
66 |
+
return encoder_output.latent_dist.mode()
|
67 |
+
elif hasattr(encoder_output, "latents"):
|
68 |
+
return encoder_output.latents
|
69 |
+
else:
|
70 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
71 |
+
|
72 |
+
|
73 |
+
class MVAdapterI2MVSDXLPipeline(StableDiffusionXLPipeline, CustomAdapterMixin):
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vae: AutoencoderKL,
|
77 |
+
text_encoder: CLIPTextModel,
|
78 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
79 |
+
tokenizer: CLIPTokenizer,
|
80 |
+
tokenizer_2: CLIPTokenizer,
|
81 |
+
unet: UNet2DConditionModel,
|
82 |
+
scheduler: KarrasDiffusionSchedulers,
|
83 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
84 |
+
feature_extractor: CLIPImageProcessor = None,
|
85 |
+
force_zeros_for_empty_prompt: bool = True,
|
86 |
+
add_watermarker: Optional[bool] = None,
|
87 |
+
):
|
88 |
+
super().__init__(
|
89 |
+
vae=vae,
|
90 |
+
text_encoder=text_encoder,
|
91 |
+
text_encoder_2=text_encoder_2,
|
92 |
+
tokenizer=tokenizer,
|
93 |
+
tokenizer_2=tokenizer_2,
|
94 |
+
unet=unet,
|
95 |
+
scheduler=scheduler,
|
96 |
+
image_encoder=image_encoder,
|
97 |
+
feature_extractor=feature_extractor,
|
98 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
|
99 |
+
add_watermarker=add_watermarker,
|
100 |
+
)
|
101 |
+
|
102 |
+
self.control_image_processor = VaeImageProcessor(
|
103 |
+
vae_scale_factor=self.vae_scale_factor,
|
104 |
+
do_convert_rgb=True,
|
105 |
+
do_normalize=False,
|
106 |
+
)
|
107 |
+
|
108 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.prepare_latents
|
109 |
+
def prepare_image_latents(
|
110 |
+
self,
|
111 |
+
image,
|
112 |
+
timestep,
|
113 |
+
batch_size,
|
114 |
+
num_images_per_prompt,
|
115 |
+
dtype,
|
116 |
+
device,
|
117 |
+
generator=None,
|
118 |
+
add_noise=True,
|
119 |
+
):
|
120 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
121 |
+
raise ValueError(
|
122 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
123 |
+
)
|
124 |
+
|
125 |
+
latents_mean = latents_std = None
|
126 |
+
if (
|
127 |
+
hasattr(self.vae.config, "latents_mean")
|
128 |
+
and self.vae.config.latents_mean is not None
|
129 |
+
):
|
130 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
131 |
+
if (
|
132 |
+
hasattr(self.vae.config, "latents_std")
|
133 |
+
and self.vae.config.latents_std is not None
|
134 |
+
):
|
135 |
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
136 |
+
|
137 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
138 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
139 |
+
self.text_encoder_2.to("cpu")
|
140 |
+
torch.cuda.empty_cache()
|
141 |
+
|
142 |
+
image = image.to(device=device, dtype=dtype)
|
143 |
+
|
144 |
+
batch_size = batch_size * num_images_per_prompt
|
145 |
+
|
146 |
+
if image.shape[1] == 4:
|
147 |
+
init_latents = image
|
148 |
+
|
149 |
+
else:
|
150 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
151 |
+
if self.vae.config.force_upcast:
|
152 |
+
image = image.float()
|
153 |
+
self.vae.to(dtype=torch.float32)
|
154 |
+
|
155 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
156 |
+
raise ValueError(
|
157 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
158 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
159 |
+
)
|
160 |
+
|
161 |
+
elif isinstance(generator, list):
|
162 |
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
163 |
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
164 |
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
165 |
+
raise ValueError(
|
166 |
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
167 |
+
)
|
168 |
+
|
169 |
+
init_latents = [
|
170 |
+
retrieve_latents(
|
171 |
+
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
172 |
+
)
|
173 |
+
for i in range(batch_size)
|
174 |
+
]
|
175 |
+
init_latents = torch.cat(init_latents, dim=0)
|
176 |
+
else:
|
177 |
+
init_latents = retrieve_latents(
|
178 |
+
self.vae.encode(image), generator=generator
|
179 |
+
)
|
180 |
+
|
181 |
+
if self.vae.config.force_upcast:
|
182 |
+
self.vae.to(dtype)
|
183 |
+
|
184 |
+
init_latents = init_latents.to(dtype)
|
185 |
+
if latents_mean is not None and latents_std is not None:
|
186 |
+
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
187 |
+
latents_std = latents_std.to(device=device, dtype=dtype)
|
188 |
+
init_latents = (
|
189 |
+
(init_latents - latents_mean)
|
190 |
+
* self.vae.config.scaling_factor
|
191 |
+
/ latents_std
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
195 |
+
|
196 |
+
if (
|
197 |
+
batch_size > init_latents.shape[0]
|
198 |
+
and batch_size % init_latents.shape[0] == 0
|
199 |
+
):
|
200 |
+
# expand init_latents for batch_size
|
201 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
202 |
+
init_latents = torch.cat(
|
203 |
+
[init_latents] * additional_image_per_prompt, dim=0
|
204 |
+
)
|
205 |
+
elif (
|
206 |
+
batch_size > init_latents.shape[0]
|
207 |
+
and batch_size % init_latents.shape[0] != 0
|
208 |
+
):
|
209 |
+
raise ValueError(
|
210 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
init_latents = torch.cat([init_latents], dim=0)
|
214 |
+
|
215 |
+
if add_noise:
|
216 |
+
shape = init_latents.shape
|
217 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
218 |
+
# get latents
|
219 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
220 |
+
|
221 |
+
latents = init_latents
|
222 |
+
|
223 |
+
return latents
|
224 |
+
|
225 |
+
def prepare_control_image(
|
226 |
+
self,
|
227 |
+
image,
|
228 |
+
width,
|
229 |
+
height,
|
230 |
+
batch_size,
|
231 |
+
num_images_per_prompt,
|
232 |
+
device,
|
233 |
+
dtype,
|
234 |
+
do_classifier_free_guidance=False,
|
235 |
+
num_empty_images=0, # for concat in batch like ImageDream
|
236 |
+
):
|
237 |
+
assert hasattr(
|
238 |
+
self, "control_image_processor"
|
239 |
+
), "control_image_processor is not initialized"
|
240 |
+
|
241 |
+
image = self.control_image_processor.preprocess(
|
242 |
+
image, height=height, width=width
|
243 |
+
).to(dtype=torch.float32)
|
244 |
+
|
245 |
+
if num_empty_images > 0:
|
246 |
+
image = torch.cat(
|
247 |
+
[image, torch.zeros_like(image[:num_empty_images])], dim=0
|
248 |
+
)
|
249 |
+
|
250 |
+
image_batch_size = image.shape[0]
|
251 |
+
|
252 |
+
if image_batch_size == 1:
|
253 |
+
repeat_by = batch_size
|
254 |
+
else:
|
255 |
+
# image batch size is the same as prompt batch size
|
256 |
+
repeat_by = num_images_per_prompt # always 1 for control image
|
257 |
+
|
258 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
259 |
+
|
260 |
+
image = image.to(device=device, dtype=dtype)
|
261 |
+
|
262 |
+
if do_classifier_free_guidance:
|
263 |
+
image = torch.cat([image] * 2)
|
264 |
+
|
265 |
+
return image
|
266 |
+
|
267 |
+
@torch.no_grad()
|
268 |
+
def __call__(
|
269 |
+
self,
|
270 |
+
prompt: Union[str, List[str]] = None,
|
271 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
272 |
+
height: Optional[int] = None,
|
273 |
+
width: Optional[int] = None,
|
274 |
+
num_inference_steps: int = 50,
|
275 |
+
timesteps: List[int] = None,
|
276 |
+
denoising_end: Optional[float] = None,
|
277 |
+
guidance_scale: float = 5.0,
|
278 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
279 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
280 |
+
num_images_per_prompt: Optional[int] = 1,
|
281 |
+
eta: float = 0.0,
|
282 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
283 |
+
latents: Optional[torch.FloatTensor] = None,
|
284 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
285 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
286 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
287 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
288 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
289 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
290 |
+
output_type: Optional[str] = "pil",
|
291 |
+
return_dict: bool = True,
|
292 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
293 |
+
guidance_rescale: float = 0.0,
|
294 |
+
original_size: Optional[Tuple[int, int]] = None,
|
295 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
296 |
+
target_size: Optional[Tuple[int, int]] = None,
|
297 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
298 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
299 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
300 |
+
clip_skip: Optional[int] = None,
|
301 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
302 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
303 |
+
# NEW
|
304 |
+
mv_scale: float = 1.0,
|
305 |
+
# Camera or geometry condition
|
306 |
+
control_image: Optional[PipelineImageInput] = None,
|
307 |
+
control_conditioning_scale: Optional[float] = 1.0,
|
308 |
+
control_conditioning_factor: float = 1.0,
|
309 |
+
# Image condition
|
310 |
+
reference_image: Optional[PipelineImageInput] = None,
|
311 |
+
reference_conditioning_scale: Optional[float] = 1.0,
|
312 |
+
**kwargs,
|
313 |
+
):
|
314 |
+
r"""
|
315 |
+
Function invoked when calling the pipeline for generation.
|
316 |
+
|
317 |
+
Args:
|
318 |
+
prompt (`str` or `List[str]`, *optional*):
|
319 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
320 |
+
instead.
|
321 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
322 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
323 |
+
used in both text-encoders
|
324 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
325 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
326 |
+
Anything below 512 pixels won't work well for
|
327 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
328 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
329 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
330 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
331 |
+
Anything below 512 pixels won't work well for
|
332 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
333 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
334 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
335 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
336 |
+
expense of slower inference.
|
337 |
+
timesteps (`List[int]`, *optional*):
|
338 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
339 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
340 |
+
passed will be used. Must be in descending order.
|
341 |
+
denoising_end (`float`, *optional*):
|
342 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
343 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
344 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
345 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
346 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
347 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
348 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
349 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
350 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
351 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
352 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
353 |
+
usually at the expense of lower image quality.
|
354 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
355 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
356 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
357 |
+
less than `1`).
|
358 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
359 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
360 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
361 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
362 |
+
The number of images to generate per prompt.
|
363 |
+
eta (`float`, *optional*, defaults to 0.0):
|
364 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
365 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
366 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
367 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
368 |
+
to make generation deterministic.
|
369 |
+
latents (`torch.FloatTensor`, *optional*):
|
370 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
371 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
372 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
373 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
374 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
375 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
376 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
377 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
378 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
379 |
+
argument.
|
380 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
381 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
382 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
383 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
384 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
385 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
386 |
+
input argument.
|
387 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
388 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
389 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
390 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
391 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
392 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
393 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
394 |
+
The output format of the generate image. Choose between
|
395 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
396 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
397 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
398 |
+
of a plain tuple.
|
399 |
+
cross_attention_kwargs (`dict`, *optional*):
|
400 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
401 |
+
`self.processor` in
|
402 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
403 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
404 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
405 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
406 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
407 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
408 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
409 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
410 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
411 |
+
explained in section 2.2 of
|
412 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
413 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
414 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
415 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
416 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
417 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
418 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
419 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
420 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
421 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
422 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
423 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
424 |
+
micro-conditioning as explained in section 2.2 of
|
425 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
426 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
427 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
428 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
429 |
+
micro-conditioning as explained in section 2.2 of
|
430 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
431 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
432 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
433 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
434 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
435 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
436 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
437 |
+
callback_on_step_end (`Callable`, *optional*):
|
438 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
439 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
440 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
441 |
+
`callback_on_step_end_tensor_inputs`.
|
442 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
443 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
444 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
445 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
446 |
+
|
447 |
+
Examples:
|
448 |
+
|
449 |
+
Returns:
|
450 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
451 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
452 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
453 |
+
"""
|
454 |
+
|
455 |
+
callback = kwargs.pop("callback", None)
|
456 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
457 |
+
|
458 |
+
if callback is not None:
|
459 |
+
deprecate(
|
460 |
+
"callback",
|
461 |
+
"1.0.0",
|
462 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
463 |
+
)
|
464 |
+
if callback_steps is not None:
|
465 |
+
deprecate(
|
466 |
+
"callback_steps",
|
467 |
+
"1.0.0",
|
468 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
469 |
+
)
|
470 |
+
|
471 |
+
# 0. Default height and width to unet
|
472 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
473 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
474 |
+
|
475 |
+
original_size = original_size or (height, width)
|
476 |
+
target_size = target_size or (height, width)
|
477 |
+
|
478 |
+
# 1. Check inputs. Raise error if not correct
|
479 |
+
self.check_inputs(
|
480 |
+
prompt,
|
481 |
+
prompt_2,
|
482 |
+
height,
|
483 |
+
width,
|
484 |
+
callback_steps,
|
485 |
+
negative_prompt,
|
486 |
+
negative_prompt_2,
|
487 |
+
prompt_embeds,
|
488 |
+
negative_prompt_embeds,
|
489 |
+
pooled_prompt_embeds,
|
490 |
+
negative_pooled_prompt_embeds,
|
491 |
+
ip_adapter_image,
|
492 |
+
ip_adapter_image_embeds,
|
493 |
+
callback_on_step_end_tensor_inputs,
|
494 |
+
)
|
495 |
+
|
496 |
+
self._guidance_scale = guidance_scale
|
497 |
+
self._guidance_rescale = guidance_rescale
|
498 |
+
self._clip_skip = clip_skip
|
499 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
500 |
+
self._denoising_end = denoising_end
|
501 |
+
self._interrupt = False
|
502 |
+
|
503 |
+
# 2. Define call parameters
|
504 |
+
if prompt is not None and isinstance(prompt, str):
|
505 |
+
batch_size = 1
|
506 |
+
elif prompt is not None and isinstance(prompt, list):
|
507 |
+
batch_size = len(prompt)
|
508 |
+
else:
|
509 |
+
batch_size = prompt_embeds.shape[0]
|
510 |
+
|
511 |
+
device = self._execution_device
|
512 |
+
|
513 |
+
# 3. Encode input prompt
|
514 |
+
lora_scale = (
|
515 |
+
self.cross_attention_kwargs.get("scale", None)
|
516 |
+
if self.cross_attention_kwargs is not None
|
517 |
+
else None
|
518 |
+
)
|
519 |
+
|
520 |
+
(
|
521 |
+
prompt_embeds,
|
522 |
+
negative_prompt_embeds,
|
523 |
+
pooled_prompt_embeds,
|
524 |
+
negative_pooled_prompt_embeds,
|
525 |
+
) = self.encode_prompt(
|
526 |
+
prompt=prompt,
|
527 |
+
prompt_2=prompt_2,
|
528 |
+
device=device,
|
529 |
+
num_images_per_prompt=num_images_per_prompt,
|
530 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
531 |
+
negative_prompt=negative_prompt,
|
532 |
+
negative_prompt_2=negative_prompt_2,
|
533 |
+
prompt_embeds=prompt_embeds,
|
534 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
535 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
536 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
537 |
+
lora_scale=lora_scale,
|
538 |
+
clip_skip=self.clip_skip,
|
539 |
+
)
|
540 |
+
|
541 |
+
# 4. Prepare timesteps
|
542 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
543 |
+
self.scheduler, num_inference_steps, device, timesteps
|
544 |
+
)
|
545 |
+
|
546 |
+
# 5. Prepare latent variables
|
547 |
+
num_channels_latents = self.unet.config.in_channels
|
548 |
+
latents = self.prepare_latents(
|
549 |
+
batch_size * num_images_per_prompt,
|
550 |
+
num_channels_latents,
|
551 |
+
height,
|
552 |
+
width,
|
553 |
+
prompt_embeds.dtype,
|
554 |
+
device,
|
555 |
+
generator,
|
556 |
+
latents,
|
557 |
+
)
|
558 |
+
|
559 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
560 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
561 |
+
|
562 |
+
# 7. Prepare added time ids & embeddings
|
563 |
+
add_text_embeds = pooled_prompt_embeds
|
564 |
+
if self.text_encoder_2 is None:
|
565 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
566 |
+
else:
|
567 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
568 |
+
|
569 |
+
add_time_ids = self._get_add_time_ids(
|
570 |
+
original_size,
|
571 |
+
crops_coords_top_left,
|
572 |
+
target_size,
|
573 |
+
dtype=prompt_embeds.dtype,
|
574 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
575 |
+
)
|
576 |
+
if negative_original_size is not None and negative_target_size is not None:
|
577 |
+
negative_add_time_ids = self._get_add_time_ids(
|
578 |
+
negative_original_size,
|
579 |
+
negative_crops_coords_top_left,
|
580 |
+
negative_target_size,
|
581 |
+
dtype=prompt_embeds.dtype,
|
582 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
negative_add_time_ids = add_time_ids
|
586 |
+
|
587 |
+
if self.do_classifier_free_guidance:
|
588 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
589 |
+
add_text_embeds = torch.cat(
|
590 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
591 |
+
)
|
592 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
593 |
+
|
594 |
+
prompt_embeds = prompt_embeds.to(device)
|
595 |
+
add_text_embeds = add_text_embeds.to(device)
|
596 |
+
add_time_ids = add_time_ids.to(device).repeat(
|
597 |
+
batch_size * num_images_per_prompt, 1
|
598 |
+
)
|
599 |
+
|
600 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
601 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
602 |
+
ip_adapter_image,
|
603 |
+
ip_adapter_image_embeds,
|
604 |
+
device,
|
605 |
+
batch_size * num_images_per_prompt,
|
606 |
+
self.do_classifier_free_guidance,
|
607 |
+
)
|
608 |
+
|
609 |
+
# Preprocess reference image
|
610 |
+
reference_image = self.image_processor.preprocess(reference_image)
|
611 |
+
reference_latents = self.prepare_image_latents(
|
612 |
+
reference_image,
|
613 |
+
timesteps[:1].repeat(batch_size * num_images_per_prompt), # no use
|
614 |
+
batch_size,
|
615 |
+
1,
|
616 |
+
prompt_embeds.dtype,
|
617 |
+
device,
|
618 |
+
generator,
|
619 |
+
add_noise=False,
|
620 |
+
)
|
621 |
+
|
622 |
+
with torch.no_grad():
|
623 |
+
ref_timesteps = torch.zeros_like(timesteps[0])
|
624 |
+
ref_hidden_states = {}
|
625 |
+
|
626 |
+
self.unet(
|
627 |
+
reference_latents,
|
628 |
+
ref_timesteps,
|
629 |
+
encoder_hidden_states=prompt_embeds[-1:],
|
630 |
+
added_cond_kwargs={
|
631 |
+
"text_embeds": add_text_embeds[-1:],
|
632 |
+
"time_ids": add_time_ids[-1:],
|
633 |
+
},
|
634 |
+
cross_attention_kwargs={
|
635 |
+
"cache_hidden_states": ref_hidden_states,
|
636 |
+
"use_mv": False,
|
637 |
+
"use_ref": False,
|
638 |
+
},
|
639 |
+
return_dict=False,
|
640 |
+
)
|
641 |
+
ref_hidden_states = {
|
642 |
+
k: v.repeat_interleave(num_images_per_prompt, dim=0)
|
643 |
+
for k, v in ref_hidden_states.items()
|
644 |
+
}
|
645 |
+
if self.do_classifier_free_guidance:
|
646 |
+
ref_hidden_states = {
|
647 |
+
k: torch.cat([torch.zeros_like(v), v], dim=0)
|
648 |
+
for k, v in ref_hidden_states.items()
|
649 |
+
}
|
650 |
+
|
651 |
+
cross_attention_kwargs = {
|
652 |
+
"mv_scale": mv_scale,
|
653 |
+
"ref_hidden_states": {k: v.clone() for k, v in ref_hidden_states.items()},
|
654 |
+
"ref_scale": reference_conditioning_scale,
|
655 |
+
**(self.cross_attention_kwargs or {}),
|
656 |
+
}
|
657 |
+
|
658 |
+
# Preprocess control image
|
659 |
+
control_image_feature = self.prepare_control_image(
|
660 |
+
image=control_image,
|
661 |
+
width=width,
|
662 |
+
height=height,
|
663 |
+
batch_size=batch_size * num_images_per_prompt,
|
664 |
+
num_images_per_prompt=1, # NOTE: always 1 for control images
|
665 |
+
device=device,
|
666 |
+
dtype=latents.dtype,
|
667 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
668 |
+
)
|
669 |
+
control_image_feature = control_image_feature.to(
|
670 |
+
device=device, dtype=latents.dtype
|
671 |
+
)
|
672 |
+
|
673 |
+
adapter_state = self.cond_encoder(control_image_feature)
|
674 |
+
for i, state in enumerate(adapter_state):
|
675 |
+
adapter_state[i] = state * control_conditioning_scale
|
676 |
+
|
677 |
+
# 8. Denoising loop
|
678 |
+
num_warmup_steps = max(
|
679 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
680 |
+
)
|
681 |
+
|
682 |
+
# 8.1 Apply denoising_end
|
683 |
+
if (
|
684 |
+
self.denoising_end is not None
|
685 |
+
and isinstance(self.denoising_end, float)
|
686 |
+
and self.denoising_end > 0
|
687 |
+
and self.denoising_end < 1
|
688 |
+
):
|
689 |
+
discrete_timestep_cutoff = int(
|
690 |
+
round(
|
691 |
+
self.scheduler.config.num_train_timesteps
|
692 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
693 |
+
)
|
694 |
+
)
|
695 |
+
num_inference_steps = len(
|
696 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
697 |
+
)
|
698 |
+
timesteps = timesteps[:num_inference_steps]
|
699 |
+
|
700 |
+
# 9. Optionally get Guidance Scale Embedding
|
701 |
+
timestep_cond = None
|
702 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
703 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
704 |
+
batch_size * num_images_per_prompt
|
705 |
+
)
|
706 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
707 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
708 |
+
).to(device=device, dtype=latents.dtype)
|
709 |
+
|
710 |
+
self._num_timesteps = len(timesteps)
|
711 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
712 |
+
for i, t in enumerate(timesteps):
|
713 |
+
if self.interrupt:
|
714 |
+
continue
|
715 |
+
|
716 |
+
# expand the latents if we are doing classifier free guidance
|
717 |
+
latent_model_input = (
|
718 |
+
torch.cat([latents] * 2)
|
719 |
+
if self.do_classifier_free_guidance
|
720 |
+
else latents
|
721 |
+
)
|
722 |
+
|
723 |
+
latent_model_input = self.scheduler.scale_model_input(
|
724 |
+
latent_model_input, t
|
725 |
+
)
|
726 |
+
|
727 |
+
added_cond_kwargs = {
|
728 |
+
"text_embeds": add_text_embeds,
|
729 |
+
"time_ids": add_time_ids,
|
730 |
+
}
|
731 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
732 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
733 |
+
|
734 |
+
if i < int(num_inference_steps * control_conditioning_factor):
|
735 |
+
down_intrablock_additional_residuals = [
|
736 |
+
state.clone() for state in adapter_state
|
737 |
+
]
|
738 |
+
else:
|
739 |
+
down_intrablock_additional_residuals = None
|
740 |
+
|
741 |
+
# predict the noise residual
|
742 |
+
noise_pred = self.unet(
|
743 |
+
latent_model_input,
|
744 |
+
t,
|
745 |
+
encoder_hidden_states=prompt_embeds,
|
746 |
+
timestep_cond=timestep_cond,
|
747 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
748 |
+
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
|
749 |
+
added_cond_kwargs=added_cond_kwargs,
|
750 |
+
return_dict=False,
|
751 |
+
)[0]
|
752 |
+
|
753 |
+
# perform guidance
|
754 |
+
if self.do_classifier_free_guidance:
|
755 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
756 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
757 |
+
noise_pred_text - noise_pred_uncond
|
758 |
+
)
|
759 |
+
|
760 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
761 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
762 |
+
noise_pred = rescale_noise_cfg(
|
763 |
+
noise_pred,
|
764 |
+
noise_pred_text,
|
765 |
+
guidance_rescale=self.guidance_rescale,
|
766 |
+
)
|
767 |
+
|
768 |
+
# compute the previous noisy sample x_t -> x_t-1
|
769 |
+
latents_dtype = latents.dtype
|
770 |
+
latents = self.scheduler.step(
|
771 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
772 |
+
)[0]
|
773 |
+
if latents.dtype != latents_dtype:
|
774 |
+
if torch.backends.mps.is_available():
|
775 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
776 |
+
latents = latents.to(latents_dtype)
|
777 |
+
|
778 |
+
if callback_on_step_end is not None:
|
779 |
+
callback_kwargs = {}
|
780 |
+
for k in callback_on_step_end_tensor_inputs:
|
781 |
+
callback_kwargs[k] = locals()[k]
|
782 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
783 |
+
|
784 |
+
latents = callback_outputs.pop("latents", latents)
|
785 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
786 |
+
negative_prompt_embeds = callback_outputs.pop(
|
787 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
788 |
+
)
|
789 |
+
add_text_embeds = callback_outputs.pop(
|
790 |
+
"add_text_embeds", add_text_embeds
|
791 |
+
)
|
792 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
793 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
794 |
+
)
|
795 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
796 |
+
negative_add_time_ids = callback_outputs.pop(
|
797 |
+
"negative_add_time_ids", negative_add_time_ids
|
798 |
+
)
|
799 |
+
|
800 |
+
# call the callback, if provided
|
801 |
+
if i == len(timesteps) - 1 or (
|
802 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
803 |
+
):
|
804 |
+
progress_bar.update()
|
805 |
+
if callback is not None and i % callback_steps == 0:
|
806 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
807 |
+
callback(step_idx, t, latents)
|
808 |
+
|
809 |
+
if not output_type == "latent":
|
810 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
811 |
+
needs_upcasting = (
|
812 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
813 |
+
)
|
814 |
+
|
815 |
+
if needs_upcasting:
|
816 |
+
self.upcast_vae()
|
817 |
+
latents = latents.to(
|
818 |
+
next(iter(self.vae.post_quant_conv.parameters())).dtype
|
819 |
+
)
|
820 |
+
elif latents.dtype != self.vae.dtype:
|
821 |
+
if torch.backends.mps.is_available():
|
822 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
823 |
+
self.vae = self.vae.to(latents.dtype)
|
824 |
+
|
825 |
+
# unscale/denormalize the latents
|
826 |
+
# denormalize with the mean and std if available and not None
|
827 |
+
has_latents_mean = (
|
828 |
+
hasattr(self.vae.config, "latents_mean")
|
829 |
+
and self.vae.config.latents_mean is not None
|
830 |
+
)
|
831 |
+
has_latents_std = (
|
832 |
+
hasattr(self.vae.config, "latents_std")
|
833 |
+
and self.vae.config.latents_std is not None
|
834 |
+
)
|
835 |
+
if has_latents_mean and has_latents_std:
|
836 |
+
latents_mean = (
|
837 |
+
torch.tensor(self.vae.config.latents_mean)
|
838 |
+
.view(1, 4, 1, 1)
|
839 |
+
.to(latents.device, latents.dtype)
|
840 |
+
)
|
841 |
+
latents_std = (
|
842 |
+
torch.tensor(self.vae.config.latents_std)
|
843 |
+
.view(1, 4, 1, 1)
|
844 |
+
.to(latents.device, latents.dtype)
|
845 |
+
)
|
846 |
+
latents = (
|
847 |
+
latents * latents_std / self.vae.config.scaling_factor
|
848 |
+
+ latents_mean
|
849 |
+
)
|
850 |
+
else:
|
851 |
+
latents = latents / self.vae.config.scaling_factor
|
852 |
+
|
853 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
854 |
+
|
855 |
+
# cast back to fp16 if needed
|
856 |
+
if needs_upcasting:
|
857 |
+
self.vae.to(dtype=torch.float16)
|
858 |
+
else:
|
859 |
+
image = latents
|
860 |
+
|
861 |
+
if not output_type == "latent":
|
862 |
+
# apply watermark if available
|
863 |
+
if self.watermark is not None:
|
864 |
+
image = self.watermark.apply_watermark(image)
|
865 |
+
|
866 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
867 |
+
|
868 |
+
# Offload all models
|
869 |
+
self.maybe_free_model_hooks()
|
870 |
+
|
871 |
+
if not return_dict:
|
872 |
+
return (image,)
|
873 |
+
|
874 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
875 |
+
|
876 |
+
### NEW: adapters ###
|
877 |
+
def _init_custom_adapter(
|
878 |
+
self,
|
879 |
+
# Multi-view adapter
|
880 |
+
num_views: int,
|
881 |
+
self_attn_processor: Any = DecoupledMVRowSelfAttnProcessor2_0,
|
882 |
+
# Condition encoder
|
883 |
+
cond_in_channels: int = 6,
|
884 |
+
# For training
|
885 |
+
copy_attn_weights: bool = True,
|
886 |
+
zero_init_module_keys: List[str] = [],
|
887 |
+
):
|
888 |
+
# Condition encoder
|
889 |
+
self.cond_encoder = T2IAdapter(
|
890 |
+
in_channels=cond_in_channels,
|
891 |
+
channels=(320, 640, 1280, 1280),
|
892 |
+
num_res_blocks=2,
|
893 |
+
downscale_factor=16,
|
894 |
+
adapter_type="full_adapter_xl",
|
895 |
+
)
|
896 |
+
|
897 |
+
# set custom attn processor for multi-view attention and image cross-attention
|
898 |
+
self.unet: UNet2DConditionModel
|
899 |
+
set_unet_2d_condition_attn_processor(
|
900 |
+
self.unet,
|
901 |
+
set_self_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor(
|
902 |
+
query_dim=hs,
|
903 |
+
inner_dim=hs,
|
904 |
+
num_views=num_views,
|
905 |
+
name=name,
|
906 |
+
use_mv=True,
|
907 |
+
use_ref=True,
|
908 |
+
),
|
909 |
+
)
|
910 |
+
|
911 |
+
# copy decoupled attention weights from original unet
|
912 |
+
if copy_attn_weights:
|
913 |
+
state_dict = self.unet.state_dict()
|
914 |
+
for key in state_dict.keys():
|
915 |
+
if "_mv" in key:
|
916 |
+
compatible_key = key.replace("_mv", "").replace("processor.", "")
|
917 |
+
elif "_ref" in key:
|
918 |
+
compatible_key = key.replace("_ref", "").replace("processor.", "")
|
919 |
+
else:
|
920 |
+
compatible_key = key
|
921 |
+
|
922 |
+
is_zero_init_key = any([k in key for k in zero_init_module_keys])
|
923 |
+
if is_zero_init_key:
|
924 |
+
state_dict[key] = torch.zeros_like(state_dict[compatible_key])
|
925 |
+
else:
|
926 |
+
state_dict[key] = state_dict[compatible_key].clone()
|
927 |
+
self.unet.load_state_dict(state_dict)
|
928 |
+
|
929 |
+
def _load_custom_adapter(self, state_dict):
|
930 |
+
self.unet.load_state_dict(state_dict, strict=False)
|
931 |
+
self.cond_encoder.load_state_dict(state_dict, strict=False)
|
932 |
+
|
933 |
+
def _save_custom_adapter(
|
934 |
+
self,
|
935 |
+
include_keys: Optional[List[str]] = None,
|
936 |
+
exclude_keys: Optional[List[str]] = None,
|
937 |
+
):
|
938 |
+
def include_fn(k):
|
939 |
+
is_included = False
|
940 |
+
|
941 |
+
if include_keys is not None:
|
942 |
+
is_included = is_included or any([key in k for key in include_keys])
|
943 |
+
if exclude_keys is not None:
|
944 |
+
is_included = is_included and not any(
|
945 |
+
[key in k for key in exclude_keys]
|
946 |
+
)
|
947 |
+
|
948 |
+
return is_included
|
949 |
+
|
950 |
+
state_dict = {k: v for k, v in self.unet.state_dict().items() if include_fn(k)}
|
951 |
+
state_dict.update(self.cond_encoder.state_dict())
|
952 |
+
|
953 |
+
return state_dict
|
mvadapter/pipelines/pipeline_mvadapter_t2mv_sdxl.py
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
19 |
+
from diffusers.models import AutoencoderKL, T2IAdapter, UNet2DConditionModel
|
20 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
|
21 |
+
StableDiffusionXLPipelineOutput,
|
22 |
+
)
|
23 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
|
24 |
+
StableDiffusionXLPipeline,
|
25 |
+
rescale_noise_cfg,
|
26 |
+
retrieve_timesteps,
|
27 |
+
)
|
28 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
29 |
+
from diffusers.utils import deprecate, logging
|
30 |
+
from transformers import (
|
31 |
+
CLIPImageProcessor,
|
32 |
+
CLIPTextModel,
|
33 |
+
CLIPTextModelWithProjection,
|
34 |
+
CLIPTokenizer,
|
35 |
+
CLIPVisionModelWithProjection,
|
36 |
+
)
|
37 |
+
|
38 |
+
from ..loaders import CustomAdapterMixin
|
39 |
+
from ..models.attention_processor import (
|
40 |
+
DecoupledMVRowSelfAttnProcessor2_0,
|
41 |
+
set_unet_2d_condition_attn_processor,
|
42 |
+
)
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
+
|
46 |
+
|
47 |
+
class MVAdapterT2MVSDXLPipeline(StableDiffusionXLPipeline, CustomAdapterMixin):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vae: AutoencoderKL,
|
51 |
+
text_encoder: CLIPTextModel,
|
52 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
53 |
+
tokenizer: CLIPTokenizer,
|
54 |
+
tokenizer_2: CLIPTokenizer,
|
55 |
+
unet: UNet2DConditionModel,
|
56 |
+
scheduler: KarrasDiffusionSchedulers,
|
57 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
58 |
+
feature_extractor: CLIPImageProcessor = None,
|
59 |
+
force_zeros_for_empty_prompt: bool = True,
|
60 |
+
add_watermarker: Optional[bool] = None,
|
61 |
+
):
|
62 |
+
super().__init__(
|
63 |
+
vae=vae,
|
64 |
+
text_encoder=text_encoder,
|
65 |
+
text_encoder_2=text_encoder_2,
|
66 |
+
tokenizer=tokenizer,
|
67 |
+
tokenizer_2=tokenizer_2,
|
68 |
+
unet=unet,
|
69 |
+
scheduler=scheduler,
|
70 |
+
image_encoder=image_encoder,
|
71 |
+
feature_extractor=feature_extractor,
|
72 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
|
73 |
+
add_watermarker=add_watermarker,
|
74 |
+
)
|
75 |
+
|
76 |
+
self.control_image_processor = VaeImageProcessor(
|
77 |
+
vae_scale_factor=self.vae_scale_factor,
|
78 |
+
do_convert_rgb=True,
|
79 |
+
do_normalize=False,
|
80 |
+
)
|
81 |
+
|
82 |
+
def prepare_control_image(
|
83 |
+
self,
|
84 |
+
image,
|
85 |
+
width,
|
86 |
+
height,
|
87 |
+
batch_size,
|
88 |
+
num_images_per_prompt,
|
89 |
+
device,
|
90 |
+
dtype,
|
91 |
+
do_classifier_free_guidance=False,
|
92 |
+
):
|
93 |
+
assert hasattr(
|
94 |
+
self, "control_image_processor"
|
95 |
+
), "control_image_processor is not initialized"
|
96 |
+
|
97 |
+
image = self.control_image_processor.preprocess(
|
98 |
+
image, height=height, width=width
|
99 |
+
).to(dtype=torch.float32)
|
100 |
+
image_batch_size = image.shape[0]
|
101 |
+
|
102 |
+
if image_batch_size == 1:
|
103 |
+
repeat_by = batch_size
|
104 |
+
else:
|
105 |
+
# image batch size is the same as prompt batch size
|
106 |
+
repeat_by = num_images_per_prompt # always 1 for control image
|
107 |
+
|
108 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
109 |
+
|
110 |
+
image = image.to(device=device, dtype=dtype)
|
111 |
+
|
112 |
+
if do_classifier_free_guidance:
|
113 |
+
image = torch.cat([image] * 2)
|
114 |
+
|
115 |
+
return image
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def __call__(
|
119 |
+
self,
|
120 |
+
prompt: Union[str, List[str]] = None,
|
121 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
122 |
+
height: Optional[int] = None,
|
123 |
+
width: Optional[int] = None,
|
124 |
+
num_inference_steps: int = 50,
|
125 |
+
timesteps: List[int] = None,
|
126 |
+
denoising_end: Optional[float] = None,
|
127 |
+
guidance_scale: float = 5.0,
|
128 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
129 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
130 |
+
num_images_per_prompt: Optional[int] = 1,
|
131 |
+
eta: float = 0.0,
|
132 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
133 |
+
latents: Optional[torch.FloatTensor] = None,
|
134 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
135 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
136 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
137 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
138 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
139 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
140 |
+
output_type: Optional[str] = "pil",
|
141 |
+
return_dict: bool = True,
|
142 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
143 |
+
guidance_rescale: float = 0.0,
|
144 |
+
original_size: Optional[Tuple[int, int]] = None,
|
145 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
146 |
+
target_size: Optional[Tuple[int, int]] = None,
|
147 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
148 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
149 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
150 |
+
clip_skip: Optional[int] = None,
|
151 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
152 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
153 |
+
# NEW
|
154 |
+
mv_scale: float = 1.0,
|
155 |
+
# Camera or geometry condition
|
156 |
+
control_image: Optional[PipelineImageInput] = None,
|
157 |
+
control_conditioning_scale: Optional[float] = 1.0,
|
158 |
+
control_conditioning_factor: float = 1.0,
|
159 |
+
# Optional. controlnet
|
160 |
+
controlnet_image: Optional[PipelineImageInput] = None,
|
161 |
+
controlnet_conditioning_scale: Optional[float] = 1.0,
|
162 |
+
**kwargs,
|
163 |
+
):
|
164 |
+
r"""
|
165 |
+
Function invoked when calling the pipeline for generation.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
prompt (`str` or `List[str]`, *optional*):
|
169 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
170 |
+
instead.
|
171 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
172 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
173 |
+
used in both text-encoders
|
174 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
175 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
176 |
+
Anything below 512 pixels won't work well for
|
177 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
178 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
179 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
180 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
181 |
+
Anything below 512 pixels won't work well for
|
182 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
183 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
184 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
185 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
186 |
+
expense of slower inference.
|
187 |
+
timesteps (`List[int]`, *optional*):
|
188 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
189 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
190 |
+
passed will be used. Must be in descending order.
|
191 |
+
denoising_end (`float`, *optional*):
|
192 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
193 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
194 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
195 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
196 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
197 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
198 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
199 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
200 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
201 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
202 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
203 |
+
usually at the expense of lower image quality.
|
204 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
205 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
206 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
207 |
+
less than `1`).
|
208 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
209 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
210 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
211 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
212 |
+
The number of images to generate per prompt.
|
213 |
+
eta (`float`, *optional*, defaults to 0.0):
|
214 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
215 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
216 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
217 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
218 |
+
to make generation deterministic.
|
219 |
+
latents (`torch.FloatTensor`, *optional*):
|
220 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
221 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
222 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
223 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
224 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
225 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
226 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
227 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
228 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
229 |
+
argument.
|
230 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
231 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
232 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
233 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
234 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
235 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
236 |
+
input argument.
|
237 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
238 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
239 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
240 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
241 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
242 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
243 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
244 |
+
The output format of the generate image. Choose between
|
245 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
246 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
247 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
248 |
+
of a plain tuple.
|
249 |
+
cross_attention_kwargs (`dict`, *optional*):
|
250 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
251 |
+
`self.processor` in
|
252 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
253 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
254 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
255 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
256 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
257 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
258 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
259 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
260 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
261 |
+
explained in section 2.2 of
|
262 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
263 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
264 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
265 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
266 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
267 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
268 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
269 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
270 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
271 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
272 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
273 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
274 |
+
micro-conditioning as explained in section 2.2 of
|
275 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
276 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
277 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
278 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
279 |
+
micro-conditioning as explained in section 2.2 of
|
280 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
281 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
282 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
283 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
284 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
285 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
286 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
287 |
+
callback_on_step_end (`Callable`, *optional*):
|
288 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
289 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
290 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
291 |
+
`callback_on_step_end_tensor_inputs`.
|
292 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
293 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
294 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
295 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
296 |
+
|
297 |
+
Examples:
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
301 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
302 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
303 |
+
"""
|
304 |
+
|
305 |
+
callback = kwargs.pop("callback", None)
|
306 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
307 |
+
|
308 |
+
if callback is not None:
|
309 |
+
deprecate(
|
310 |
+
"callback",
|
311 |
+
"1.0.0",
|
312 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
313 |
+
)
|
314 |
+
if callback_steps is not None:
|
315 |
+
deprecate(
|
316 |
+
"callback_steps",
|
317 |
+
"1.0.0",
|
318 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
319 |
+
)
|
320 |
+
|
321 |
+
# 0. Default height and width to unet
|
322 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
323 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
324 |
+
|
325 |
+
original_size = original_size or (height, width)
|
326 |
+
target_size = target_size or (height, width)
|
327 |
+
|
328 |
+
# 1. Check inputs. Raise error if not correct
|
329 |
+
self.check_inputs(
|
330 |
+
prompt,
|
331 |
+
prompt_2,
|
332 |
+
height,
|
333 |
+
width,
|
334 |
+
callback_steps,
|
335 |
+
negative_prompt,
|
336 |
+
negative_prompt_2,
|
337 |
+
prompt_embeds,
|
338 |
+
negative_prompt_embeds,
|
339 |
+
pooled_prompt_embeds,
|
340 |
+
negative_pooled_prompt_embeds,
|
341 |
+
ip_adapter_image,
|
342 |
+
ip_adapter_image_embeds,
|
343 |
+
callback_on_step_end_tensor_inputs,
|
344 |
+
)
|
345 |
+
|
346 |
+
self._guidance_scale = guidance_scale
|
347 |
+
self._guidance_rescale = guidance_rescale
|
348 |
+
self._clip_skip = clip_skip
|
349 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
350 |
+
self._denoising_end = denoising_end
|
351 |
+
self._interrupt = False
|
352 |
+
|
353 |
+
# 2. Define call parameters
|
354 |
+
if prompt is not None and isinstance(prompt, str):
|
355 |
+
batch_size = 1
|
356 |
+
elif prompt is not None and isinstance(prompt, list):
|
357 |
+
batch_size = len(prompt)
|
358 |
+
else:
|
359 |
+
batch_size = prompt_embeds.shape[0]
|
360 |
+
|
361 |
+
device = self._execution_device
|
362 |
+
|
363 |
+
# 3. Encode input prompt
|
364 |
+
lora_scale = (
|
365 |
+
self.cross_attention_kwargs.get("scale", None)
|
366 |
+
if self.cross_attention_kwargs is not None
|
367 |
+
else None
|
368 |
+
)
|
369 |
+
|
370 |
+
(
|
371 |
+
prompt_embeds,
|
372 |
+
negative_prompt_embeds,
|
373 |
+
pooled_prompt_embeds,
|
374 |
+
negative_pooled_prompt_embeds,
|
375 |
+
) = self.encode_prompt(
|
376 |
+
prompt=prompt,
|
377 |
+
prompt_2=prompt_2,
|
378 |
+
device=device,
|
379 |
+
num_images_per_prompt=num_images_per_prompt,
|
380 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
381 |
+
negative_prompt=negative_prompt,
|
382 |
+
negative_prompt_2=negative_prompt_2,
|
383 |
+
prompt_embeds=prompt_embeds,
|
384 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
385 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
386 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
387 |
+
lora_scale=lora_scale,
|
388 |
+
clip_skip=self.clip_skip,
|
389 |
+
)
|
390 |
+
|
391 |
+
# 4. Prepare timesteps
|
392 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
393 |
+
self.scheduler, num_inference_steps, device, timesteps
|
394 |
+
)
|
395 |
+
|
396 |
+
# 5. Prepare latent variables
|
397 |
+
num_channels_latents = self.unet.config.in_channels
|
398 |
+
latents = self.prepare_latents(
|
399 |
+
batch_size * num_images_per_prompt,
|
400 |
+
num_channels_latents,
|
401 |
+
height,
|
402 |
+
width,
|
403 |
+
prompt_embeds.dtype,
|
404 |
+
device,
|
405 |
+
generator,
|
406 |
+
latents,
|
407 |
+
)
|
408 |
+
|
409 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
410 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
411 |
+
|
412 |
+
# 7. Prepare added time ids & embeddings
|
413 |
+
add_text_embeds = pooled_prompt_embeds
|
414 |
+
if self.text_encoder_2 is None:
|
415 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
416 |
+
else:
|
417 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
418 |
+
|
419 |
+
add_time_ids = self._get_add_time_ids(
|
420 |
+
original_size,
|
421 |
+
crops_coords_top_left,
|
422 |
+
target_size,
|
423 |
+
dtype=prompt_embeds.dtype,
|
424 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
425 |
+
)
|
426 |
+
if negative_original_size is not None and negative_target_size is not None:
|
427 |
+
negative_add_time_ids = self._get_add_time_ids(
|
428 |
+
negative_original_size,
|
429 |
+
negative_crops_coords_top_left,
|
430 |
+
negative_target_size,
|
431 |
+
dtype=prompt_embeds.dtype,
|
432 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
negative_add_time_ids = add_time_ids
|
436 |
+
|
437 |
+
if self.do_classifier_free_guidance:
|
438 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
439 |
+
add_text_embeds = torch.cat(
|
440 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
441 |
+
)
|
442 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
443 |
+
|
444 |
+
prompt_embeds = prompt_embeds.to(device)
|
445 |
+
add_text_embeds = add_text_embeds.to(device)
|
446 |
+
add_time_ids = add_time_ids.to(device).repeat(
|
447 |
+
batch_size * num_images_per_prompt, 1
|
448 |
+
)
|
449 |
+
|
450 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
451 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
452 |
+
ip_adapter_image,
|
453 |
+
ip_adapter_image_embeds,
|
454 |
+
device,
|
455 |
+
batch_size * num_images_per_prompt,
|
456 |
+
self.do_classifier_free_guidance,
|
457 |
+
)
|
458 |
+
|
459 |
+
# Preprocess control image
|
460 |
+
control_image_feature = self.prepare_control_image(
|
461 |
+
image=control_image,
|
462 |
+
width=width,
|
463 |
+
height=height,
|
464 |
+
batch_size=batch_size * num_images_per_prompt,
|
465 |
+
num_images_per_prompt=1, # NOTE: always 1 for control images
|
466 |
+
device=device,
|
467 |
+
dtype=latents.dtype,
|
468 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
469 |
+
)
|
470 |
+
control_image_feature = control_image_feature.to(
|
471 |
+
device=device, dtype=latents.dtype
|
472 |
+
)
|
473 |
+
|
474 |
+
adapter_state = self.cond_encoder(control_image_feature)
|
475 |
+
for i, state in enumerate(adapter_state):
|
476 |
+
adapter_state[i] = state * control_conditioning_scale
|
477 |
+
|
478 |
+
# Preprocess controlnet image if provided
|
479 |
+
do_controlnet = controlnet_image is not None and hasattr(self, "controlnet")
|
480 |
+
if do_controlnet:
|
481 |
+
controlnet_image = self.prepare_control_image(
|
482 |
+
image=controlnet_image,
|
483 |
+
width=width,
|
484 |
+
height=height,
|
485 |
+
batch_size=batch_size * num_images_per_prompt,
|
486 |
+
num_images_per_prompt=1, # NOTE: always 1 for control images
|
487 |
+
device=device,
|
488 |
+
dtype=latents.dtype,
|
489 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
490 |
+
)
|
491 |
+
controlnet_image = controlnet_image.to(device=device, dtype=latents.dtype)
|
492 |
+
|
493 |
+
# 8. Denoising loop
|
494 |
+
num_warmup_steps = max(
|
495 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
496 |
+
)
|
497 |
+
|
498 |
+
# 8.1 Apply denoising_end
|
499 |
+
if (
|
500 |
+
self.denoising_end is not None
|
501 |
+
and isinstance(self.denoising_end, float)
|
502 |
+
and self.denoising_end > 0
|
503 |
+
and self.denoising_end < 1
|
504 |
+
):
|
505 |
+
discrete_timestep_cutoff = int(
|
506 |
+
round(
|
507 |
+
self.scheduler.config.num_train_timesteps
|
508 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
num_inference_steps = len(
|
512 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
513 |
+
)
|
514 |
+
timesteps = timesteps[:num_inference_steps]
|
515 |
+
|
516 |
+
# 9. Optionally get Guidance Scale Embedding
|
517 |
+
timestep_cond = None
|
518 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
519 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
520 |
+
batch_size * num_images_per_prompt
|
521 |
+
)
|
522 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
523 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
524 |
+
).to(device=device, dtype=latents.dtype)
|
525 |
+
|
526 |
+
self._num_timesteps = len(timesteps)
|
527 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
528 |
+
for i, t in enumerate(timesteps):
|
529 |
+
if self.interrupt:
|
530 |
+
continue
|
531 |
+
|
532 |
+
# expand the latents if we are doing classifier free guidance
|
533 |
+
latent_model_input = (
|
534 |
+
torch.cat([latents] * 2)
|
535 |
+
if self.do_classifier_free_guidance
|
536 |
+
else latents
|
537 |
+
)
|
538 |
+
|
539 |
+
latent_model_input = self.scheduler.scale_model_input(
|
540 |
+
latent_model_input, t
|
541 |
+
)
|
542 |
+
|
543 |
+
added_cond_kwargs = {
|
544 |
+
"text_embeds": add_text_embeds,
|
545 |
+
"time_ids": add_time_ids,
|
546 |
+
}
|
547 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
548 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
549 |
+
|
550 |
+
if i < int(num_inference_steps * control_conditioning_factor):
|
551 |
+
down_intrablock_additional_residuals = [
|
552 |
+
state.clone() for state in adapter_state
|
553 |
+
]
|
554 |
+
else:
|
555 |
+
down_intrablock_additional_residuals = None
|
556 |
+
|
557 |
+
unet_add_kwargs = {}
|
558 |
+
|
559 |
+
# Do controlnet if provided
|
560 |
+
if do_controlnet:
|
561 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
562 |
+
latent_model_input,
|
563 |
+
t,
|
564 |
+
encoder_hidden_states=prompt_embeds,
|
565 |
+
controlnet_cond=controlnet_image,
|
566 |
+
conditioning_scale=controlnet_conditioning_scale,
|
567 |
+
guess_mode=False,
|
568 |
+
added_cond_kwargs=added_cond_kwargs,
|
569 |
+
return_dict=False,
|
570 |
+
)
|
571 |
+
unet_add_kwargs.update(
|
572 |
+
{
|
573 |
+
"down_block_additional_residuals": down_block_res_samples,
|
574 |
+
"mid_block_additional_residual": mid_block_res_sample,
|
575 |
+
}
|
576 |
+
)
|
577 |
+
|
578 |
+
# predict the noise residual
|
579 |
+
noise_pred = self.unet(
|
580 |
+
latent_model_input,
|
581 |
+
t,
|
582 |
+
encoder_hidden_states=prompt_embeds,
|
583 |
+
timestep_cond=timestep_cond,
|
584 |
+
cross_attention_kwargs={
|
585 |
+
"mv_scale": mv_scale,
|
586 |
+
**(self.cross_attention_kwargs or {}),
|
587 |
+
},
|
588 |
+
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
|
589 |
+
added_cond_kwargs=added_cond_kwargs,
|
590 |
+
return_dict=False,
|
591 |
+
**unet_add_kwargs,
|
592 |
+
)[0]
|
593 |
+
|
594 |
+
# perform guidance
|
595 |
+
if self.do_classifier_free_guidance:
|
596 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
597 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
598 |
+
noise_pred_text - noise_pred_uncond
|
599 |
+
)
|
600 |
+
|
601 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
602 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
603 |
+
noise_pred = rescale_noise_cfg(
|
604 |
+
noise_pred,
|
605 |
+
noise_pred_text,
|
606 |
+
guidance_rescale=self.guidance_rescale,
|
607 |
+
)
|
608 |
+
|
609 |
+
# compute the previous noisy sample x_t -> x_t-1
|
610 |
+
latents_dtype = latents.dtype
|
611 |
+
latents = self.scheduler.step(
|
612 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
613 |
+
)[0]
|
614 |
+
if latents.dtype != latents_dtype:
|
615 |
+
if torch.backends.mps.is_available():
|
616 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
617 |
+
latents = latents.to(latents_dtype)
|
618 |
+
|
619 |
+
if callback_on_step_end is not None:
|
620 |
+
callback_kwargs = {}
|
621 |
+
for k in callback_on_step_end_tensor_inputs:
|
622 |
+
callback_kwargs[k] = locals()[k]
|
623 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
624 |
+
|
625 |
+
latents = callback_outputs.pop("latents", latents)
|
626 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
627 |
+
negative_prompt_embeds = callback_outputs.pop(
|
628 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
629 |
+
)
|
630 |
+
add_text_embeds = callback_outputs.pop(
|
631 |
+
"add_text_embeds", add_text_embeds
|
632 |
+
)
|
633 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
634 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
635 |
+
)
|
636 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
637 |
+
negative_add_time_ids = callback_outputs.pop(
|
638 |
+
"negative_add_time_ids", negative_add_time_ids
|
639 |
+
)
|
640 |
+
|
641 |
+
# call the callback, if provided
|
642 |
+
if i == len(timesteps) - 1 or (
|
643 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
644 |
+
):
|
645 |
+
progress_bar.update()
|
646 |
+
if callback is not None and i % callback_steps == 0:
|
647 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
648 |
+
callback(step_idx, t, latents)
|
649 |
+
|
650 |
+
if not output_type == "latent":
|
651 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
652 |
+
needs_upcasting = (
|
653 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
654 |
+
)
|
655 |
+
|
656 |
+
if needs_upcasting:
|
657 |
+
self.upcast_vae()
|
658 |
+
latents = latents.to(
|
659 |
+
next(iter(self.vae.post_quant_conv.parameters())).dtype
|
660 |
+
)
|
661 |
+
elif latents.dtype != self.vae.dtype:
|
662 |
+
if torch.backends.mps.is_available():
|
663 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
664 |
+
self.vae = self.vae.to(latents.dtype)
|
665 |
+
|
666 |
+
# unscale/denormalize the latents
|
667 |
+
# denormalize with the mean and std if available and not None
|
668 |
+
has_latents_mean = (
|
669 |
+
hasattr(self.vae.config, "latents_mean")
|
670 |
+
and self.vae.config.latents_mean is not None
|
671 |
+
)
|
672 |
+
has_latents_std = (
|
673 |
+
hasattr(self.vae.config, "latents_std")
|
674 |
+
and self.vae.config.latents_std is not None
|
675 |
+
)
|
676 |
+
if has_latents_mean and has_latents_std:
|
677 |
+
latents_mean = (
|
678 |
+
torch.tensor(self.vae.config.latents_mean)
|
679 |
+
.view(1, 4, 1, 1)
|
680 |
+
.to(latents.device, latents.dtype)
|
681 |
+
)
|
682 |
+
latents_std = (
|
683 |
+
torch.tensor(self.vae.config.latents_std)
|
684 |
+
.view(1, 4, 1, 1)
|
685 |
+
.to(latents.device, latents.dtype)
|
686 |
+
)
|
687 |
+
latents = (
|
688 |
+
latents * latents_std / self.vae.config.scaling_factor
|
689 |
+
+ latents_mean
|
690 |
+
)
|
691 |
+
else:
|
692 |
+
latents = latents / self.vae.config.scaling_factor
|
693 |
+
|
694 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
695 |
+
|
696 |
+
# cast back to fp16 if needed
|
697 |
+
if needs_upcasting:
|
698 |
+
self.vae.to(dtype=torch.float16)
|
699 |
+
else:
|
700 |
+
image = latents
|
701 |
+
|
702 |
+
if not output_type == "latent":
|
703 |
+
# apply watermark if available
|
704 |
+
if self.watermark is not None:
|
705 |
+
image = self.watermark.apply_watermark(image)
|
706 |
+
|
707 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
708 |
+
|
709 |
+
# Offload all models
|
710 |
+
self.maybe_free_model_hooks()
|
711 |
+
|
712 |
+
if not return_dict:
|
713 |
+
return (image,)
|
714 |
+
|
715 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
716 |
+
|
717 |
+
### NEW: adapters ###
|
718 |
+
def _init_custom_adapter(
|
719 |
+
self,
|
720 |
+
# Multi-view adapter
|
721 |
+
num_views: int,
|
722 |
+
self_attn_processor: Any = DecoupledMVRowSelfAttnProcessor2_0,
|
723 |
+
# Condition encoder
|
724 |
+
cond_in_channels: int = 6,
|
725 |
+
# For training
|
726 |
+
copy_attn_weights: bool = True,
|
727 |
+
zero_init_module_keys: List[str] = [],
|
728 |
+
):
|
729 |
+
# Condition encoder
|
730 |
+
self.cond_encoder = T2IAdapter(
|
731 |
+
in_channels=cond_in_channels,
|
732 |
+
channels=(320, 640, 1280, 1280),
|
733 |
+
num_res_blocks=2,
|
734 |
+
downscale_factor=16,
|
735 |
+
adapter_type="full_adapter_xl",
|
736 |
+
)
|
737 |
+
|
738 |
+
# set custom attn processor for multi-view attention
|
739 |
+
self.unet: UNet2DConditionModel
|
740 |
+
set_unet_2d_condition_attn_processor(
|
741 |
+
self.unet,
|
742 |
+
set_self_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor(
|
743 |
+
query_dim=hs,
|
744 |
+
inner_dim=hs,
|
745 |
+
num_views=num_views,
|
746 |
+
name=name,
|
747 |
+
use_mv=True,
|
748 |
+
use_ref=False,
|
749 |
+
),
|
750 |
+
)
|
751 |
+
|
752 |
+
# copy decoupled attention weights from original unet
|
753 |
+
if copy_attn_weights:
|
754 |
+
state_dict = self.unet.state_dict()
|
755 |
+
for key in state_dict.keys():
|
756 |
+
if "_mv" in key:
|
757 |
+
compatible_key = key.replace("_mv", "").replace("processor.", "")
|
758 |
+
else:
|
759 |
+
compatible_key = key
|
760 |
+
|
761 |
+
is_zero_init_key = any([k in key for k in zero_init_module_keys])
|
762 |
+
if is_zero_init_key:
|
763 |
+
state_dict[key] = torch.zeros_like(state_dict[compatible_key])
|
764 |
+
else:
|
765 |
+
state_dict[key] = state_dict[compatible_key].clone()
|
766 |
+
self.unet.load_state_dict(state_dict)
|
767 |
+
|
768 |
+
def _load_custom_adapter(self, state_dict):
|
769 |
+
self.unet.load_state_dict(state_dict, strict=False)
|
770 |
+
self.cond_encoder.load_state_dict(state_dict, strict=False)
|
771 |
+
|
772 |
+
def _save_custom_adapter(
|
773 |
+
self,
|
774 |
+
include_keys: Optional[List[str]] = None,
|
775 |
+
exclude_keys: Optional[List[str]] = None,
|
776 |
+
):
|
777 |
+
def include_fn(k):
|
778 |
+
is_included = False
|
779 |
+
|
780 |
+
if include_keys is not None:
|
781 |
+
is_included = is_included or any([key in k for key in include_keys])
|
782 |
+
if exclude_keys is not None:
|
783 |
+
is_included = is_included and not any(
|
784 |
+
[key in k for key in exclude_keys]
|
785 |
+
)
|
786 |
+
|
787 |
+
return is_included
|
788 |
+
|
789 |
+
state_dict = {k: v for k, v in self.unet.state_dict().items() if include_fn(k)}
|
790 |
+
state_dict.update(self.cond_encoder.state_dict())
|
791 |
+
|
792 |
+
return state_dict
|
mvadapter/schedulers/scheduler_utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_sigmas(noise_scheduler, timesteps, n_dim=4, dtype=torch.float32, device=None):
|
5 |
+
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
|
6 |
+
schedule_timesteps = noise_scheduler.timesteps.to(device)
|
7 |
+
timesteps = timesteps.to(device)
|
8 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
9 |
+
sigma = sigmas[step_indices].flatten()
|
10 |
+
while len(sigma.shape) < n_dim:
|
11 |
+
sigma = sigma.unsqueeze(-1)
|
12 |
+
return sigma
|
13 |
+
|
14 |
+
|
15 |
+
def SNR_to_betas(snr):
|
16 |
+
"""
|
17 |
+
Converts SNR to betas
|
18 |
+
"""
|
19 |
+
# alphas_cumprod = pass
|
20 |
+
# snr = (alpha / ) ** 2
|
21 |
+
# alpha_t^2 / (1 - alpha_t^2) = snr
|
22 |
+
alpha_t = (snr / (1 + snr)) ** 0.5
|
23 |
+
alphas_cumprod = alpha_t**2
|
24 |
+
alphas = alphas_cumprod / torch.cat(
|
25 |
+
[torch.ones(1, device=snr.device), alphas_cumprod[:-1]]
|
26 |
+
)
|
27 |
+
betas = 1 - alphas
|
28 |
+
return betas
|
29 |
+
|
30 |
+
|
31 |
+
def compute_snr(timesteps, noise_scheduler):
|
32 |
+
"""
|
33 |
+
Computes SNR as per Min-SNR-Diffusion-Training/guided_diffusion/gaussian_diffusion.py at 521b624bd70c67cee4bdf49225915f5
|
34 |
+
"""
|
35 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
36 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
37 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
38 |
+
|
39 |
+
# Expand the tensors.
|
40 |
+
# Adapted from Min-SNR-Diffusion-Training/guided_diffusion/gaussian_diffusion.py at 521b624bd70c67cee4bdf49225915f5
|
41 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
|
42 |
+
timesteps
|
43 |
+
].float()
|
44 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
45 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
46 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
47 |
+
|
48 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
|
49 |
+
device=timesteps.device
|
50 |
+
)[timesteps].float()
|
51 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
52 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
53 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
54 |
+
|
55 |
+
# Compute SNR.
|
56 |
+
snr = (alpha / sigma) ** 2
|
57 |
+
return snr
|
58 |
+
|
59 |
+
|
60 |
+
def compute_alpha(timesteps, noise_scheduler):
|
61 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
62 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
63 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
|
64 |
+
timesteps
|
65 |
+
].float()
|
66 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
67 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
68 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
69 |
+
|
70 |
+
return alpha
|
mvadapter/schedulers/scheduling_shift_snr.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .scheduler_utils import SNR_to_betas, compute_snr
|
6 |
+
|
7 |
+
|
8 |
+
class ShiftSNRScheduler:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
noise_scheduler: Any,
|
12 |
+
timesteps: Any,
|
13 |
+
shift_scale: float,
|
14 |
+
scheduler_class: Any,
|
15 |
+
):
|
16 |
+
self.noise_scheduler = noise_scheduler
|
17 |
+
self.timesteps = timesteps
|
18 |
+
self.shift_scale = shift_scale
|
19 |
+
self.scheduler_class = scheduler_class
|
20 |
+
|
21 |
+
def _get_shift_scheduler(self):
|
22 |
+
"""
|
23 |
+
Prepare scheduler for shifted betas.
|
24 |
+
|
25 |
+
:return: A scheduler object configured with shifted betas
|
26 |
+
"""
|
27 |
+
snr = compute_snr(self.timesteps, self.noise_scheduler)
|
28 |
+
shifted_betas = SNR_to_betas(snr / self.shift_scale)
|
29 |
+
|
30 |
+
return self.scheduler_class.from_config(
|
31 |
+
self.noise_scheduler.config, trained_betas=shifted_betas.numpy()
|
32 |
+
)
|
33 |
+
|
34 |
+
def _get_interpolated_shift_scheduler(self):
|
35 |
+
"""
|
36 |
+
Prepare scheduler for shifted betas and interpolate with the original betas in log space.
|
37 |
+
|
38 |
+
:return: A scheduler object configured with interpolated shifted betas
|
39 |
+
"""
|
40 |
+
snr = compute_snr(self.timesteps, self.noise_scheduler)
|
41 |
+
shifted_snr = snr / self.shift_scale
|
42 |
+
|
43 |
+
weighting = self.timesteps.float() / (
|
44 |
+
self.noise_scheduler.config.num_train_timesteps - 1
|
45 |
+
)
|
46 |
+
interpolated_snr = torch.exp(
|
47 |
+
torch.log(snr) * (1 - weighting) + torch.log(shifted_snr) * weighting
|
48 |
+
)
|
49 |
+
|
50 |
+
shifted_betas = SNR_to_betas(interpolated_snr)
|
51 |
+
|
52 |
+
return self.scheduler_class.from_config(
|
53 |
+
self.noise_scheduler.config, trained_betas=shifted_betas.numpy()
|
54 |
+
)
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def from_scheduler(
|
58 |
+
cls,
|
59 |
+
noise_scheduler: Any,
|
60 |
+
shift_mode: str = "default",
|
61 |
+
timesteps: Any = None,
|
62 |
+
shift_scale: float = 1.0,
|
63 |
+
scheduler_class: Any = None,
|
64 |
+
):
|
65 |
+
# Check input
|
66 |
+
if timesteps is None:
|
67 |
+
timesteps = torch.arange(0, noise_scheduler.config.num_train_timesteps)
|
68 |
+
if scheduler_class is None:
|
69 |
+
scheduler_class = noise_scheduler.__class__
|
70 |
+
|
71 |
+
# Create scheduler
|
72 |
+
shift_scheduler = cls(
|
73 |
+
noise_scheduler=noise_scheduler,
|
74 |
+
timesteps=timesteps,
|
75 |
+
shift_scale=shift_scale,
|
76 |
+
scheduler_class=scheduler_class,
|
77 |
+
)
|
78 |
+
|
79 |
+
if shift_mode == "default":
|
80 |
+
return shift_scheduler._get_shift_scheduler()
|
81 |
+
elif shift_mode == "interpolated":
|
82 |
+
return shift_scheduler._get_interpolated_shift_scheduler()
|
83 |
+
else:
|
84 |
+
raise ValueError(f"Unknown shift_mode: {shift_mode}")
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
"""
|
89 |
+
Compare the alpha values for different noise schedulers.
|
90 |
+
"""
|
91 |
+
import matplotlib.pyplot as plt
|
92 |
+
from diffusers import DDPMScheduler
|
93 |
+
|
94 |
+
from .scheduler_utils import compute_alpha
|
95 |
+
|
96 |
+
# Base
|
97 |
+
timesteps = torch.arange(0, 1000)
|
98 |
+
noise_scheduler_base = DDPMScheduler.from_pretrained(
|
99 |
+
"runwayml/stable-diffusion-v1-5", subfolder="scheduler"
|
100 |
+
)
|
101 |
+
alpha = compute_alpha(timesteps, noise_scheduler_base)
|
102 |
+
plt.plot(timesteps.numpy(), alpha.numpy(), label="Base")
|
103 |
+
|
104 |
+
# Kolors
|
105 |
+
num_train_timesteps_ = 1100
|
106 |
+
timesteps_ = torch.arange(0, num_train_timesteps_)
|
107 |
+
noise_kwargs = {"beta_end": 0.014, "num_train_timesteps": num_train_timesteps_}
|
108 |
+
noise_scheduler_kolors = DDPMScheduler.from_config(
|
109 |
+
noise_scheduler_base.config, **noise_kwargs
|
110 |
+
)
|
111 |
+
alpha = compute_alpha(timesteps_, noise_scheduler_kolors)
|
112 |
+
plt.plot(timesteps_.numpy(), alpha.numpy(), label="Kolors")
|
113 |
+
|
114 |
+
# Shift betas
|
115 |
+
shift_scale = 8.0
|
116 |
+
noise_scheduler_shift = ShiftSNRScheduler.from_scheduler(
|
117 |
+
noise_scheduler_base, shift_mode="default", shift_scale=shift_scale
|
118 |
+
)
|
119 |
+
alpha = compute_alpha(timesteps, noise_scheduler_shift)
|
120 |
+
plt.plot(timesteps.numpy(), alpha.numpy(), label="Shift Noise (scale 8.0)")
|
121 |
+
|
122 |
+
# Shift betas (interpolated)
|
123 |
+
noise_scheduler_inter = ShiftSNRScheduler.from_scheduler(
|
124 |
+
noise_scheduler_base, shift_mode="interpolated", shift_scale=shift_scale
|
125 |
+
)
|
126 |
+
alpha = compute_alpha(timesteps, noise_scheduler_inter)
|
127 |
+
plt.plot(timesteps.numpy(), alpha.numpy(), label="Interpolated (scale 8.0)")
|
128 |
+
|
129 |
+
# ZeroSNR
|
130 |
+
noise_scheduler = DDPMScheduler.from_config(
|
131 |
+
noise_scheduler_base.config, rescale_betas_zero_snr=True
|
132 |
+
)
|
133 |
+
alpha = compute_alpha(timesteps, noise_scheduler)
|
134 |
+
plt.plot(timesteps.numpy(), alpha.numpy(), label="ZeroSNR")
|
135 |
+
|
136 |
+
plt.legend()
|
137 |
+
plt.grid()
|
138 |
+
plt.savefig("check_alpha.png")
|
mvadapter/utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .camera import get_camera, get_orthogonal_camera
|
2 |
+
from .geometry import get_plucker_embeds_from_cameras_ortho
|
3 |
+
from .saving import make_image_grid, tensor_to_image
|
mvadapter/utils/camera.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
# import trimesh
|
9 |
+
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
from torch import BoolTensor, FloatTensor
|
13 |
+
|
14 |
+
LIST_TYPE = Union[list, np.ndarray, torch.Tensor]
|
15 |
+
|
16 |
+
|
17 |
+
def list_to_pt(
|
18 |
+
x: LIST_TYPE, dtype: Optional[torch.dtype] = None, device: Optional[str] = None
|
19 |
+
) -> torch.Tensor:
|
20 |
+
if isinstance(x, list) or isinstance(x, np.ndarray):
|
21 |
+
return torch.tensor(x, dtype=dtype, device=device)
|
22 |
+
return x.to(dtype=dtype)
|
23 |
+
|
24 |
+
|
25 |
+
def get_c2w(
|
26 |
+
elevation_deg: LIST_TYPE,
|
27 |
+
distance: LIST_TYPE,
|
28 |
+
azimuth_deg: Optional[LIST_TYPE],
|
29 |
+
num_views: Optional[int] = 1,
|
30 |
+
device: Optional[str] = None,
|
31 |
+
) -> torch.FloatTensor:
|
32 |
+
if azimuth_deg is None:
|
33 |
+
assert (
|
34 |
+
num_views is not None
|
35 |
+
), "num_views must be provided if azimuth_deg is None."
|
36 |
+
azimuth_deg = torch.linspace(
|
37 |
+
0, 360, num_views + 1, dtype=torch.float32, device=device
|
38 |
+
)[:-1]
|
39 |
+
else:
|
40 |
+
num_views = len(azimuth_deg)
|
41 |
+
azimuth_deg = list_to_pt(azimuth_deg, dtype=torch.float32, device=device)
|
42 |
+
elevation_deg = list_to_pt(elevation_deg, dtype=torch.float32, device=device)
|
43 |
+
camera_distances = list_to_pt(distance, dtype=torch.float32, device=device)
|
44 |
+
elevation = elevation_deg * math.pi / 180
|
45 |
+
azimuth = azimuth_deg * math.pi / 180
|
46 |
+
camera_positions = torch.stack(
|
47 |
+
[
|
48 |
+
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
|
49 |
+
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
|
50 |
+
camera_distances * torch.sin(elevation),
|
51 |
+
],
|
52 |
+
dim=-1,
|
53 |
+
)
|
54 |
+
center = torch.zeros_like(camera_positions)
|
55 |
+
up = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)[None, :].repeat(
|
56 |
+
num_views, 1
|
57 |
+
)
|
58 |
+
lookat = F.normalize(center - camera_positions, dim=-1)
|
59 |
+
right = F.normalize(torch.cross(lookat, up, dim=-1), dim=-1)
|
60 |
+
up = F.normalize(torch.cross(right, lookat, dim=-1), dim=-1)
|
61 |
+
c2w3x4 = torch.cat(
|
62 |
+
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
|
63 |
+
dim=-1,
|
64 |
+
)
|
65 |
+
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
|
66 |
+
c2w[:, 3, 3] = 1.0
|
67 |
+
return c2w
|
68 |
+
|
69 |
+
|
70 |
+
def get_projection_matrix(
|
71 |
+
fovy_deg: LIST_TYPE,
|
72 |
+
aspect_wh: float = 1.0,
|
73 |
+
near: float = 0.1,
|
74 |
+
far: float = 100.0,
|
75 |
+
device: Optional[str] = None,
|
76 |
+
) -> torch.FloatTensor:
|
77 |
+
fovy_deg = list_to_pt(fovy_deg, dtype=torch.float32, device=device)
|
78 |
+
batch_size = fovy_deg.shape[0]
|
79 |
+
fovy = fovy_deg * math.pi / 180
|
80 |
+
tan_half_fovy = torch.tan(fovy / 2)
|
81 |
+
projection_matrix = torch.zeros(
|
82 |
+
batch_size, 4, 4, dtype=torch.float32, device=device
|
83 |
+
)
|
84 |
+
projection_matrix[:, 0, 0] = 1 / (aspect_wh * tan_half_fovy)
|
85 |
+
projection_matrix[:, 1, 1] = -1 / tan_half_fovy
|
86 |
+
projection_matrix[:, 2, 2] = -(far + near) / (far - near)
|
87 |
+
projection_matrix[:, 2, 3] = -2 * far * near / (far - near)
|
88 |
+
projection_matrix[:, 3, 2] = -1
|
89 |
+
return projection_matrix
|
90 |
+
|
91 |
+
|
92 |
+
def get_orthogonal_projection_matrix(
|
93 |
+
batch_size: int,
|
94 |
+
left: float,
|
95 |
+
right: float,
|
96 |
+
bottom: float,
|
97 |
+
top: float,
|
98 |
+
near: float = 0.1,
|
99 |
+
far: float = 100.0,
|
100 |
+
device: Optional[str] = None,
|
101 |
+
) -> torch.FloatTensor:
|
102 |
+
projection_matrix = torch.zeros(
|
103 |
+
batch_size, 4, 4, dtype=torch.float32, device=device
|
104 |
+
)
|
105 |
+
projection_matrix[:, 0, 0] = 2 / (right - left)
|
106 |
+
projection_matrix[:, 1, 1] = -2 / (top - bottom)
|
107 |
+
projection_matrix[:, 2, 2] = -2 / (far - near)
|
108 |
+
projection_matrix[:, 0, 3] = -(right + left) / (right - left)
|
109 |
+
projection_matrix[:, 1, 3] = -(top + bottom) / (top - bottom)
|
110 |
+
projection_matrix[:, 2, 3] = -(far + near) / (far - near)
|
111 |
+
projection_matrix[:, 3, 3] = 1
|
112 |
+
return projection_matrix
|
113 |
+
|
114 |
+
|
115 |
+
@dataclass
|
116 |
+
class Camera:
|
117 |
+
c2w: Optional[torch.FloatTensor]
|
118 |
+
w2c: torch.FloatTensor
|
119 |
+
proj_mtx: torch.FloatTensor
|
120 |
+
mvp_mtx: torch.FloatTensor
|
121 |
+
cam_pos: Optional[torch.FloatTensor]
|
122 |
+
|
123 |
+
def __getitem__(self, index):
|
124 |
+
if isinstance(index, int):
|
125 |
+
sl = slice(index, index + 1)
|
126 |
+
elif isinstance(index, slice):
|
127 |
+
sl = index
|
128 |
+
else:
|
129 |
+
raise NotImplementedError
|
130 |
+
|
131 |
+
return Camera(
|
132 |
+
c2w=self.c2w[sl] if self.c2w is not None else None,
|
133 |
+
w2c=self.w2c[sl],
|
134 |
+
proj_mtx=self.proj_mtx[sl],
|
135 |
+
mvp_mtx=self.mvp_mtx[sl],
|
136 |
+
cam_pos=self.cam_pos[sl] if self.cam_pos is not None else None,
|
137 |
+
)
|
138 |
+
|
139 |
+
def to(self, device: Optional[str] = None):
|
140 |
+
if self.c2w is not None:
|
141 |
+
self.c2w = self.c2w.to(device)
|
142 |
+
self.w2c = self.w2c.to(device)
|
143 |
+
self.proj_mtx = self.proj_mtx.to(device)
|
144 |
+
self.mvp_mtx = self.mvp_mtx.to(device)
|
145 |
+
if self.cam_pos is not None:
|
146 |
+
self.cam_pos = self.cam_pos.to(device)
|
147 |
+
|
148 |
+
def __len__(self):
|
149 |
+
return self.c2w.shape[0]
|
150 |
+
|
151 |
+
|
152 |
+
def get_camera(
|
153 |
+
elevation_deg: Optional[LIST_TYPE] = None,
|
154 |
+
distance: Optional[LIST_TYPE] = None,
|
155 |
+
fovy_deg: Optional[LIST_TYPE] = None,
|
156 |
+
azimuth_deg: Optional[LIST_TYPE] = None,
|
157 |
+
num_views: Optional[int] = 1,
|
158 |
+
c2w: Optional[torch.FloatTensor] = None,
|
159 |
+
w2c: Optional[torch.FloatTensor] = None,
|
160 |
+
proj_mtx: Optional[torch.FloatTensor] = None,
|
161 |
+
aspect_wh: float = 1.0,
|
162 |
+
near: float = 0.1,
|
163 |
+
far: float = 100.0,
|
164 |
+
device: Optional[str] = None,
|
165 |
+
):
|
166 |
+
if w2c is None:
|
167 |
+
if c2w is None:
|
168 |
+
c2w = get_c2w(elevation_deg, distance, azimuth_deg, num_views, device)
|
169 |
+
camera_positions = c2w[:, :3, 3]
|
170 |
+
w2c = torch.linalg.inv(c2w)
|
171 |
+
else:
|
172 |
+
camera_positions = None
|
173 |
+
c2w = None
|
174 |
+
if proj_mtx is None:
|
175 |
+
proj_mtx = get_projection_matrix(
|
176 |
+
fovy_deg, aspect_wh=aspect_wh, near=near, far=far, device=device
|
177 |
+
)
|
178 |
+
mvp_mtx = proj_mtx @ w2c
|
179 |
+
return Camera(
|
180 |
+
c2w=c2w, w2c=w2c, proj_mtx=proj_mtx, mvp_mtx=mvp_mtx, cam_pos=camera_positions
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
def get_orthogonal_camera(
|
185 |
+
elevation_deg: LIST_TYPE,
|
186 |
+
distance: LIST_TYPE,
|
187 |
+
left: float,
|
188 |
+
right: float,
|
189 |
+
bottom: float,
|
190 |
+
top: float,
|
191 |
+
azimuth_deg: Optional[LIST_TYPE] = None,
|
192 |
+
num_views: Optional[int] = 1,
|
193 |
+
near: float = 0.1,
|
194 |
+
far: float = 100.0,
|
195 |
+
device: Optional[str] = None,
|
196 |
+
):
|
197 |
+
c2w = get_c2w(elevation_deg, distance, azimuth_deg, num_views, device)
|
198 |
+
camera_positions = c2w[:, :3, 3]
|
199 |
+
w2c = torch.linalg.inv(c2w)
|
200 |
+
proj_mtx = get_orthogonal_projection_matrix(
|
201 |
+
batch_size=c2w.shape[0],
|
202 |
+
left=left,
|
203 |
+
right=right,
|
204 |
+
bottom=bottom,
|
205 |
+
top=top,
|
206 |
+
near=near,
|
207 |
+
far=far,
|
208 |
+
device=device,
|
209 |
+
)
|
210 |
+
mvp_mtx = proj_mtx @ w2c
|
211 |
+
return Camera(
|
212 |
+
c2w=c2w, w2c=w2c, proj_mtx=proj_mtx, mvp_mtx=mvp_mtx, cam_pos=camera_positions
|
213 |
+
)
|
mvadapter/utils/geometry.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def get_position_map_from_depth(depth, mask, intrinsics, extrinsics, image_wh=None):
|
9 |
+
"""Compute the position map from the depth map and the camera parameters for a batch of views.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
|
13 |
+
mask (torch.Tensor): The masks with the shape (B, H, W, 1).
|
14 |
+
intrinsics (torch.Tensor): The camera intrinsics matrices with the shape (B, 3, 3).
|
15 |
+
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
|
16 |
+
image_wh (Tuple[int, int]): The image width and height.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
torch.Tensor: The position maps with the shape (B, H, W, 3).
|
20 |
+
"""
|
21 |
+
if image_wh is None:
|
22 |
+
image_wh = depth.shape[2], depth.shape[1]
|
23 |
+
|
24 |
+
B, H, W, _ = depth.shape
|
25 |
+
depth = depth.squeeze(-1)
|
26 |
+
|
27 |
+
u_coord, v_coord = torch.meshgrid(
|
28 |
+
torch.arange(image_wh[0]), torch.arange(image_wh[1]), indexing="xy"
|
29 |
+
)
|
30 |
+
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
|
31 |
+
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
|
32 |
+
|
33 |
+
# Compute the position map by back-projecting depth pixels to 3D space
|
34 |
+
x = (
|
35 |
+
(u_coord - intrinsics[:, 0, 2].unsqueeze(-1).unsqueeze(-1))
|
36 |
+
* depth
|
37 |
+
/ intrinsics[:, 0, 0].unsqueeze(-1).unsqueeze(-1)
|
38 |
+
)
|
39 |
+
y = (
|
40 |
+
(v_coord - intrinsics[:, 1, 2].unsqueeze(-1).unsqueeze(-1))
|
41 |
+
* depth
|
42 |
+
/ intrinsics[:, 1, 1].unsqueeze(-1).unsqueeze(-1)
|
43 |
+
)
|
44 |
+
z = depth
|
45 |
+
|
46 |
+
# Concatenate to form the 3D coordinates in the camera frame
|
47 |
+
camera_coords = torch.stack([x, y, z], dim=-1)
|
48 |
+
|
49 |
+
# Apply the extrinsic matrix to get coordinates in the world frame
|
50 |
+
coords_homogeneous = torch.nn.functional.pad(
|
51 |
+
camera_coords, (0, 1), "constant", 1.0
|
52 |
+
) # Add a homogeneous coordinate
|
53 |
+
world_coords = torch.matmul(
|
54 |
+
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
|
55 |
+
).view(B, H, W, 4)
|
56 |
+
|
57 |
+
# Apply the mask to the position map
|
58 |
+
position_map = world_coords[..., :3] * mask
|
59 |
+
|
60 |
+
return position_map
|
61 |
+
|
62 |
+
|
63 |
+
def get_position_map_from_depth_ortho(
|
64 |
+
depth, mask, extrinsics, ortho_scale, image_wh=None
|
65 |
+
):
|
66 |
+
"""Compute the position map from the depth map and the camera parameters for a batch of views
|
67 |
+
using orthographic projection with a given ortho_scale.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
|
71 |
+
mask (torch.Tensor): The masks with the shape (B, H, W, 1).
|
72 |
+
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
|
73 |
+
ortho_scale (torch.Tensor): The scaling factor for the orthographic projection with the shape (B, 1, 1, 1).
|
74 |
+
image_wh (Tuple[int, int]): Optional. The image width and height.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
torch.Tensor: The position maps with the shape (B, H, W, 3).
|
78 |
+
"""
|
79 |
+
if image_wh is None:
|
80 |
+
image_wh = depth.shape[2], depth.shape[1]
|
81 |
+
|
82 |
+
B, H, W, _ = depth.shape
|
83 |
+
depth = depth.squeeze(-1)
|
84 |
+
|
85 |
+
# Generating grid of coordinates in the image space
|
86 |
+
u_coord, v_coord = torch.meshgrid(
|
87 |
+
torch.arange(0, image_wh[0]), torch.arange(0, image_wh[1]), indexing="xy"
|
88 |
+
)
|
89 |
+
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
|
90 |
+
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
|
91 |
+
|
92 |
+
# Compute the position map using orthographic projection with ortho_scale
|
93 |
+
x = (u_coord - image_wh[0] / 2) / ortho_scale / image_wh[0]
|
94 |
+
y = (v_coord - image_wh[1] / 2) / ortho_scale / image_wh[1]
|
95 |
+
z = depth
|
96 |
+
|
97 |
+
# Concatenate to form the 3D coordinates in the camera frame
|
98 |
+
camera_coords = torch.stack([x, y, z], dim=-1)
|
99 |
+
|
100 |
+
# Apply the extrinsic matrix to get coordinates in the world frame
|
101 |
+
coords_homogeneous = torch.nn.functional.pad(
|
102 |
+
camera_coords, (0, 1), "constant", 1.0
|
103 |
+
) # Add a homogeneous coordinate
|
104 |
+
world_coords = torch.matmul(
|
105 |
+
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
|
106 |
+
).view(B, H, W, 4)
|
107 |
+
|
108 |
+
# Apply the mask to the position map
|
109 |
+
position_map = world_coords[..., :3] * mask
|
110 |
+
|
111 |
+
return position_map
|
112 |
+
|
113 |
+
|
114 |
+
def get_opencv_from_blender(matrix_world, fov=None, image_size=None):
|
115 |
+
# convert matrix_world to opencv format extrinsics
|
116 |
+
opencv_world_to_cam = matrix_world.inverse()
|
117 |
+
opencv_world_to_cam[1, :] *= -1
|
118 |
+
opencv_world_to_cam[2, :] *= -1
|
119 |
+
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
|
120 |
+
|
121 |
+
if fov is None: # orthographic camera
|
122 |
+
return R, T
|
123 |
+
|
124 |
+
R, T = R.unsqueeze(0), T.unsqueeze(0)
|
125 |
+
# convert fov to opencv format intrinsics
|
126 |
+
focal = 1 / np.tan(fov / 2)
|
127 |
+
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
|
128 |
+
opencv_cam_matrix = (
|
129 |
+
torch.from_numpy(intrinsics).unsqueeze(0).float().to(matrix_world.device)
|
130 |
+
)
|
131 |
+
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]).to(
|
132 |
+
matrix_world.device
|
133 |
+
)
|
134 |
+
opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2
|
135 |
+
|
136 |
+
return R, T, opencv_cam_matrix
|
137 |
+
|
138 |
+
|
139 |
+
def get_ray_directions(
|
140 |
+
H: int,
|
141 |
+
W: int,
|
142 |
+
focal: float,
|
143 |
+
principal: Optional[Tuple[float, float]] = None,
|
144 |
+
use_pixel_centers: bool = True,
|
145 |
+
) -> torch.Tensor:
|
146 |
+
"""
|
147 |
+
Get ray directions for all pixels in camera coordinate.
|
148 |
+
Args:
|
149 |
+
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
|
150 |
+
Outputs:
|
151 |
+
directions: (H, W, 3), the direction of the rays in camera coordinate
|
152 |
+
"""
|
153 |
+
pixel_center = 0.5 if use_pixel_centers else 0
|
154 |
+
cx, cy = W / 2, H / 2 if principal is None else principal
|
155 |
+
i, j = torch.meshgrid(
|
156 |
+
torch.arange(W, dtype=torch.float32) + pixel_center,
|
157 |
+
torch.arange(H, dtype=torch.float32) + pixel_center,
|
158 |
+
indexing="xy",
|
159 |
+
)
|
160 |
+
directions = torch.stack(
|
161 |
+
[(i - cx) / focal, -(j - cy) / focal, -torch.ones_like(i)], -1
|
162 |
+
)
|
163 |
+
return F.normalize(directions, dim=-1)
|
164 |
+
|
165 |
+
|
166 |
+
def get_rays(
|
167 |
+
directions: torch.Tensor, c2w: torch.Tensor
|
168 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
169 |
+
"""
|
170 |
+
Get ray origins and directions from camera coordinates to world coordinates
|
171 |
+
Args:
|
172 |
+
directions: (H, W, 3) ray directions in camera coordinates
|
173 |
+
c2w: (4, 4) camera-to-world transformation matrix
|
174 |
+
Outputs:
|
175 |
+
rays_o, rays_d: (H, W, 3) ray origins and directions in world coordinates
|
176 |
+
"""
|
177 |
+
# Rotate ray directions from camera coordinate to the world coordinate
|
178 |
+
rays_d = directions @ c2w[:3, :3].T
|
179 |
+
rays_o = c2w[:3, 3].expand(rays_d.shape)
|
180 |
+
return rays_o, rays_d
|
181 |
+
|
182 |
+
|
183 |
+
def compute_plucker_embed(
|
184 |
+
c2w: torch.Tensor, image_width: int, image_height: int, focal: float
|
185 |
+
) -> torch.Tensor:
|
186 |
+
"""
|
187 |
+
Computes Plucker coordinates for a camera.
|
188 |
+
Args:
|
189 |
+
c2w: (4, 4) camera-to-world transformation matrix
|
190 |
+
image_width: Image width
|
191 |
+
image_height: Image height
|
192 |
+
focal: Focal length of the camera
|
193 |
+
Returns:
|
194 |
+
plucker: (6, H, W) Plucker embedding
|
195 |
+
"""
|
196 |
+
directions = get_ray_directions(image_height, image_width, focal)
|
197 |
+
rays_o, rays_d = get_rays(directions, c2w)
|
198 |
+
# Cross product to get Plucker coordinates
|
199 |
+
cross = torch.cross(rays_o, rays_d, dim=-1)
|
200 |
+
plucker = torch.cat((rays_d, cross), dim=-1)
|
201 |
+
return plucker.permute(2, 0, 1)
|
202 |
+
|
203 |
+
|
204 |
+
def get_plucker_embeds_from_cameras(
|
205 |
+
c2w: List[torch.Tensor], fov: List[float], image_size: int
|
206 |
+
) -> torch.Tensor:
|
207 |
+
"""
|
208 |
+
Given lists of camera transformations and fov, returns the batched plucker embeddings.
|
209 |
+
Args:
|
210 |
+
c2w: list of camera-to-world transformation matrices
|
211 |
+
fov: list of field of view values
|
212 |
+
image_size: size of the image
|
213 |
+
Returns:
|
214 |
+
plucker_embeds: (B, 6, H, W) batched plucker embeddings
|
215 |
+
"""
|
216 |
+
plucker_embeds = []
|
217 |
+
for cam_matrix, cam_fov in zip(c2w, fov):
|
218 |
+
focal = 0.5 * image_size / np.tan(0.5 * cam_fov)
|
219 |
+
plucker = compute_plucker_embed(cam_matrix, image_size, image_size, focal)
|
220 |
+
plucker_embeds.append(plucker)
|
221 |
+
return torch.stack(plucker_embeds)
|
222 |
+
|
223 |
+
|
224 |
+
def get_plucker_embeds_from_cameras_ortho(
|
225 |
+
c2w: List[torch.Tensor], ortho_scale: List[float], image_size: int
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Given lists of camera transformations and fov, returns the batched plucker embeddings.
|
229 |
+
|
230 |
+
Parameters:
|
231 |
+
c2w: list of camera-to-world transformation matrices
|
232 |
+
fov: list of field of view values
|
233 |
+
image_size: size of the image
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
plucker_embeds: plucker embeddings (B, 6, H, W)
|
237 |
+
"""
|
238 |
+
plucker_embeds = []
|
239 |
+
# compute pairwise mask and plucker embeddings
|
240 |
+
for cam_matrix, scale in zip(c2w, ortho_scale):
|
241 |
+
# blender to opencv to pytorch3d
|
242 |
+
R, T = get_opencv_from_blender(cam_matrix)
|
243 |
+
cam_pos = -R.T @ T
|
244 |
+
view_dir = R.T @ torch.tensor([0, 0, 1]).float().to(cam_matrix.device)
|
245 |
+
# normalize camera position
|
246 |
+
cam_pos = F.normalize(cam_pos, dim=0)
|
247 |
+
plucker = torch.concat([view_dir, cam_pos])
|
248 |
+
plucker = plucker.unsqueeze(-1).unsqueeze(-1).repeat(1, image_size, image_size)
|
249 |
+
plucker_embeds.append(plucker)
|
250 |
+
|
251 |
+
plucker_embeds = torch.stack(plucker_embeds)
|
252 |
+
|
253 |
+
return plucker_embeds
|
mvadapter/utils/saving.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
def tensor_to_image(
|
10 |
+
data: Union[Image.Image, torch.Tensor, np.ndarray],
|
11 |
+
batched: bool = False,
|
12 |
+
format: str = "HWC",
|
13 |
+
) -> Union[Image.Image, List[Image.Image]]:
|
14 |
+
if isinstance(data, Image.Image):
|
15 |
+
return data
|
16 |
+
if isinstance(data, torch.Tensor):
|
17 |
+
data = data.detach().cpu().numpy()
|
18 |
+
if data.dtype == np.float32 or data.dtype == np.float16:
|
19 |
+
data = (data * 255).astype(np.uint8)
|
20 |
+
elif data.dtype == np.bool_:
|
21 |
+
data = data.astype(np.uint8) * 255
|
22 |
+
assert data.dtype == np.uint8
|
23 |
+
if format == "CHW":
|
24 |
+
if batched and data.ndim == 4:
|
25 |
+
data = data.transpose((0, 2, 3, 1))
|
26 |
+
elif not batched and data.ndim == 3:
|
27 |
+
data = data.transpose((1, 2, 0))
|
28 |
+
|
29 |
+
if batched:
|
30 |
+
return [Image.fromarray(d) for d in data]
|
31 |
+
return Image.fromarray(data)
|
32 |
+
|
33 |
+
|
34 |
+
def largest_factor_near_sqrt(n: int) -> int:
|
35 |
+
"""
|
36 |
+
Finds the largest factor of n that is closest to the square root of n.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
n (int): The integer for which to find the largest factor near its square root.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
int: The largest factor of n that is closest to the square root of n.
|
43 |
+
"""
|
44 |
+
sqrt_n = int(math.sqrt(n)) # Get the integer part of the square root
|
45 |
+
|
46 |
+
# First, check if the square root itself is a factor
|
47 |
+
if sqrt_n * sqrt_n == n:
|
48 |
+
return sqrt_n
|
49 |
+
|
50 |
+
# Otherwise, find the largest factor by iterating from sqrt_n downwards
|
51 |
+
for i in range(sqrt_n, 0, -1):
|
52 |
+
if n % i == 0:
|
53 |
+
return i
|
54 |
+
|
55 |
+
# If n is 1, return 1
|
56 |
+
return 1
|
57 |
+
|
58 |
+
|
59 |
+
def make_image_grid(
|
60 |
+
images: List[Image.Image],
|
61 |
+
rows: Optional[int] = None,
|
62 |
+
cols: Optional[int] = None,
|
63 |
+
resize: Optional[int] = None,
|
64 |
+
) -> Image.Image:
|
65 |
+
"""
|
66 |
+
Prepares a single grid of images. Useful for visualization purposes.
|
67 |
+
"""
|
68 |
+
if rows is None and cols is not None:
|
69 |
+
assert len(images) % cols == 0
|
70 |
+
rows = len(images) // cols
|
71 |
+
elif cols is None and rows is not None:
|
72 |
+
assert len(images) % rows == 0
|
73 |
+
cols = len(images) // rows
|
74 |
+
elif rows is None and cols is None:
|
75 |
+
rows = largest_factor_near_sqrt(len(images))
|
76 |
+
cols = len(images) // rows
|
77 |
+
|
78 |
+
assert len(images) == rows * cols
|
79 |
+
|
80 |
+
if resize is not None:
|
81 |
+
images = [img.resize((resize, resize)) for img in images]
|
82 |
+
|
83 |
+
w, h = images[0].size
|
84 |
+
grid = Image.new("RGB", size=(cols * w, rows * h))
|
85 |
+
|
86 |
+
for i, img in enumerate(images):
|
87 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
88 |
+
return grid
|