Ashoka74 commited on
Commit
3b7d18f
ยท
verified ยท
1 Parent(s): baa33e3

Upload 12 files

Browse files
depth_anything_v2/dinov2.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ # References:
7
+ # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
8
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
9
+
10
+ from functools import partial
11
+ import math
12
+ import logging
13
+ from typing import Sequence, Tuple, Union, Callable
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.utils.checkpoint
18
+ from torch.nn.init import trunc_normal_
19
+
20
+ from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
27
+ if not depth_first and include_root:
28
+ fn(module=module, name=name)
29
+ for child_name, child_module in module.named_children():
30
+ child_name = ".".join((name, child_name)) if name else child_name
31
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
32
+ if depth_first and include_root:
33
+ fn(module=module, name=name)
34
+ return module
35
+
36
+
37
+ class BlockChunk(nn.ModuleList):
38
+ def forward(self, x):
39
+ for b in self:
40
+ x = b(x)
41
+ return x
42
+
43
+
44
+ class DinoVisionTransformer(nn.Module):
45
+ def __init__(
46
+ self,
47
+ img_size=224,
48
+ patch_size=16,
49
+ in_chans=3,
50
+ embed_dim=768,
51
+ depth=12,
52
+ num_heads=12,
53
+ mlp_ratio=4.0,
54
+ qkv_bias=True,
55
+ ffn_bias=True,
56
+ proj_bias=True,
57
+ drop_path_rate=0.0,
58
+ drop_path_uniform=False,
59
+ init_values=None, # for layerscale: None or 0 => no layerscale
60
+ embed_layer=PatchEmbed,
61
+ act_layer=nn.GELU,
62
+ block_fn=Block,
63
+ ffn_layer="mlp",
64
+ block_chunks=1,
65
+ num_register_tokens=0,
66
+ interpolate_antialias=False,
67
+ interpolate_offset=0.1,
68
+ ):
69
+ """
70
+ Args:
71
+ img_size (int, tuple): input image size
72
+ patch_size (int, tuple): patch size
73
+ in_chans (int): number of input channels
74
+ embed_dim (int): embedding dimension
75
+ depth (int): depth of transformer
76
+ num_heads (int): number of attention heads
77
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
78
+ qkv_bias (bool): enable bias for qkv if True
79
+ proj_bias (bool): enable bias for proj in attn if True
80
+ ffn_bias (bool): enable bias for ffn if True
81
+ drop_path_rate (float): stochastic depth rate
82
+ drop_path_uniform (bool): apply uniform drop rate across blocks
83
+ weight_init (str): weight init scheme
84
+ init_values (float): layer-scale init values
85
+ embed_layer (nn.Module): patch embedding layer
86
+ act_layer (nn.Module): MLP activation layer
87
+ block_fn (nn.Module): transformer block class
88
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
89
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
90
+ num_register_tokens: (int) number of extra cls tokens (so-called "registers")
91
+ interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
92
+ interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
93
+ """
94
+ super().__init__()
95
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
96
+
97
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
98
+ self.num_tokens = 1
99
+ self.n_blocks = depth
100
+ self.num_heads = num_heads
101
+ self.patch_size = patch_size
102
+ self.num_register_tokens = num_register_tokens
103
+ self.interpolate_antialias = interpolate_antialias
104
+ self.interpolate_offset = interpolate_offset
105
+
106
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
107
+ num_patches = self.patch_embed.num_patches
108
+
109
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
110
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
111
+ assert num_register_tokens >= 0
112
+ self.register_tokens = (
113
+ nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
114
+ )
115
+
116
+ if drop_path_uniform is True:
117
+ dpr = [drop_path_rate] * depth
118
+ else:
119
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
120
+
121
+ if ffn_layer == "mlp":
122
+ logger.info("using MLP layer as FFN")
123
+ ffn_layer = Mlp
124
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
125
+ logger.info("using SwiGLU layer as FFN")
126
+ ffn_layer = SwiGLUFFNFused
127
+ elif ffn_layer == "identity":
128
+ logger.info("using Identity layer as FFN")
129
+
130
+ def f(*args, **kwargs):
131
+ return nn.Identity()
132
+
133
+ ffn_layer = f
134
+ else:
135
+ raise NotImplementedError
136
+
137
+ blocks_list = [
138
+ block_fn(
139
+ dim=embed_dim,
140
+ num_heads=num_heads,
141
+ mlp_ratio=mlp_ratio,
142
+ qkv_bias=qkv_bias,
143
+ proj_bias=proj_bias,
144
+ ffn_bias=ffn_bias,
145
+ drop_path=dpr[i],
146
+ norm_layer=norm_layer,
147
+ act_layer=act_layer,
148
+ ffn_layer=ffn_layer,
149
+ init_values=init_values,
150
+ )
151
+ for i in range(depth)
152
+ ]
153
+ if block_chunks > 0:
154
+ self.chunked_blocks = True
155
+ chunked_blocks = []
156
+ chunksize = depth // block_chunks
157
+ for i in range(0, depth, chunksize):
158
+ # this is to keep the block index consistent if we chunk the block list
159
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
160
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
161
+ else:
162
+ self.chunked_blocks = False
163
+ self.blocks = nn.ModuleList(blocks_list)
164
+
165
+ self.norm = norm_layer(embed_dim)
166
+ self.head = nn.Identity()
167
+
168
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
169
+
170
+ self.init_weights()
171
+
172
+ def init_weights(self):
173
+ trunc_normal_(self.pos_embed, std=0.02)
174
+ nn.init.normal_(self.cls_token, std=1e-6)
175
+ if self.register_tokens is not None:
176
+ nn.init.normal_(self.register_tokens, std=1e-6)
177
+ named_apply(init_weights_vit_timm, self)
178
+
179
+ def interpolate_pos_encoding(self, x, w, h):
180
+ previous_dtype = x.dtype
181
+ npatch = x.shape[1] - 1
182
+ N = self.pos_embed.shape[1] - 1
183
+ if npatch == N and w == h:
184
+ return self.pos_embed
185
+ pos_embed = self.pos_embed.float()
186
+ class_pos_embed = pos_embed[:, 0]
187
+ patch_pos_embed = pos_embed[:, 1:]
188
+ dim = x.shape[-1]
189
+ w0 = w // self.patch_size
190
+ h0 = h // self.patch_size
191
+ # we add a small number to avoid floating point error in the interpolation
192
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
193
+ # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
194
+ w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
195
+ # w0, h0 = w0 + 0.1, h0 + 0.1
196
+
197
+ sqrt_N = math.sqrt(N)
198
+ sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
199
+ patch_pos_embed = nn.functional.interpolate(
200
+ patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
201
+ scale_factor=(sx, sy),
202
+ # (int(w0), int(h0)), # to solve the upsampling shape issue
203
+ mode="bicubic",
204
+ antialias=self.interpolate_antialias
205
+ )
206
+
207
+ assert int(w0) == patch_pos_embed.shape[-2]
208
+ assert int(h0) == patch_pos_embed.shape[-1]
209
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
210
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
211
+
212
+ def prepare_tokens_with_masks(self, x, masks=None):
213
+ B, nc, w, h = x.shape
214
+ x = self.patch_embed(x)
215
+ if masks is not None:
216
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
217
+
218
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
219
+ x = x + self.interpolate_pos_encoding(x, w, h)
220
+
221
+ if self.register_tokens is not None:
222
+ x = torch.cat(
223
+ (
224
+ x[:, :1],
225
+ self.register_tokens.expand(x.shape[0], -1, -1),
226
+ x[:, 1:],
227
+ ),
228
+ dim=1,
229
+ )
230
+
231
+ return x
232
+
233
+ def forward_features_list(self, x_list, masks_list):
234
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
235
+ for blk in self.blocks:
236
+ x = blk(x)
237
+
238
+ all_x = x
239
+ output = []
240
+ for x, masks in zip(all_x, masks_list):
241
+ x_norm = self.norm(x)
242
+ output.append(
243
+ {
244
+ "x_norm_clstoken": x_norm[:, 0],
245
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
246
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
247
+ "x_prenorm": x,
248
+ "masks": masks,
249
+ }
250
+ )
251
+ return output
252
+
253
+ def forward_features(self, x, masks=None):
254
+ if isinstance(x, list):
255
+ return self.forward_features_list(x, masks)
256
+
257
+ x = self.prepare_tokens_with_masks(x, masks)
258
+
259
+ for blk in self.blocks:
260
+ x = blk(x)
261
+
262
+ x_norm = self.norm(x)
263
+ return {
264
+ "x_norm_clstoken": x_norm[:, 0],
265
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
266
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
267
+ "x_prenorm": x,
268
+ "masks": masks,
269
+ }
270
+
271
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
272
+ x = self.prepare_tokens_with_masks(x)
273
+ # If n is an int, take the n last blocks. If it's a list, take them
274
+ output, total_block_len = [], len(self.blocks)
275
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
276
+ for i, blk in enumerate(self.blocks):
277
+ x = blk(x)
278
+ if i in blocks_to_take:
279
+ output.append(x)
280
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
281
+ return output
282
+
283
+ def _get_intermediate_layers_chunked(self, x, n=1):
284
+ x = self.prepare_tokens_with_masks(x)
285
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
286
+ # If n is an int, take the n last blocks. If it's a list, take them
287
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
288
+ for block_chunk in self.blocks:
289
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
290
+ x = blk(x)
291
+ if i in blocks_to_take:
292
+ output.append(x)
293
+ i += 1
294
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
295
+ return output
296
+
297
+ def get_intermediate_layers(
298
+ self,
299
+ x: torch.Tensor,
300
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
301
+ reshape: bool = False,
302
+ return_class_token: bool = False,
303
+ norm=True
304
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
305
+ if self.chunked_blocks:
306
+ outputs = self._get_intermediate_layers_chunked(x, n)
307
+ else:
308
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
309
+ if norm:
310
+ outputs = [self.norm(out) for out in outputs]
311
+ class_tokens = [out[:, 0] for out in outputs]
312
+ outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
313
+ if reshape:
314
+ B, _, w, h = x.shape
315
+ outputs = [
316
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
317
+ for out in outputs
318
+ ]
319
+ if return_class_token:
320
+ return tuple(zip(outputs, class_tokens))
321
+ return tuple(outputs)
322
+
323
+ def forward(self, *args, is_training=False, **kwargs):
324
+ ret = self.forward_features(*args, **kwargs)
325
+ if is_training:
326
+ return ret
327
+ else:
328
+ return self.head(ret["x_norm_clstoken"])
329
+
330
+
331
+ def init_weights_vit_timm(module: nn.Module, name: str = ""):
332
+ """ViT weight initialization, original timm impl (for reproducibility)"""
333
+ if isinstance(module, nn.Linear):
334
+ trunc_normal_(module.weight, std=0.02)
335
+ if module.bias is not None:
336
+ nn.init.zeros_(module.bias)
337
+
338
+
339
+ def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
340
+ model = DinoVisionTransformer(
341
+ patch_size=patch_size,
342
+ embed_dim=384,
343
+ depth=12,
344
+ num_heads=6,
345
+ mlp_ratio=4,
346
+ block_fn=partial(Block, attn_class=MemEffAttention),
347
+ num_register_tokens=num_register_tokens,
348
+ **kwargs,
349
+ )
350
+ return model
351
+
352
+
353
+ def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
354
+ model = DinoVisionTransformer(
355
+ patch_size=patch_size,
356
+ embed_dim=768,
357
+ depth=12,
358
+ num_heads=12,
359
+ mlp_ratio=4,
360
+ block_fn=partial(Block, attn_class=MemEffAttention),
361
+ num_register_tokens=num_register_tokens,
362
+ **kwargs,
363
+ )
364
+ return model
365
+
366
+
367
+ def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
368
+ model = DinoVisionTransformer(
369
+ patch_size=patch_size,
370
+ embed_dim=1024,
371
+ depth=24,
372
+ num_heads=16,
373
+ mlp_ratio=4,
374
+ block_fn=partial(Block, attn_class=MemEffAttention),
375
+ num_register_tokens=num_register_tokens,
376
+ **kwargs,
377
+ )
378
+ return model
379
+
380
+
381
+ def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
382
+ """
383
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
384
+ """
385
+ model = DinoVisionTransformer(
386
+ patch_size=patch_size,
387
+ embed_dim=1536,
388
+ depth=40,
389
+ num_heads=24,
390
+ mlp_ratio=4,
391
+ block_fn=partial(Block, attn_class=MemEffAttention),
392
+ num_register_tokens=num_register_tokens,
393
+ **kwargs,
394
+ )
395
+ return model
396
+
397
+
398
+ def DINOv2(model_name):
399
+ model_zoo = {
400
+ "vits": vit_small,
401
+ "vitb": vit_base,
402
+ "vitl": vit_large,
403
+ "vitg": vit_giant2
404
+ }
405
+
406
+ return model_zoo[model_name](
407
+ img_size=518,
408
+ patch_size=14,
409
+ init_values=1.0,
410
+ ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
411
+ block_chunks=0,
412
+ num_register_tokens=0,
413
+ interpolate_antialias=False,
414
+ interpolate_offset=0.1
415
+ )
depth_anything_v2/dinov2_layers/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .mlp import Mlp
8
+ from .patch_embed import PatchEmbed
9
+ from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
10
+ from .block import NestedTensorBlock
11
+ from .attention import MemEffAttention
depth_anything_v2/dinov2_layers/attention.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
10
+
11
+ import logging
12
+
13
+ from torch import Tensor
14
+ from torch import nn
15
+
16
+
17
+ logger = logging.getLogger("dinov2")
18
+
19
+
20
+ try:
21
+ from xformers.ops import memory_efficient_attention, unbind, fmha
22
+
23
+ XFORMERS_AVAILABLE = True
24
+ except ImportError:
25
+ logger.warning("xFormers not available")
26
+ XFORMERS_AVAILABLE = False
27
+
28
+
29
+ class Attention(nn.Module):
30
+ def __init__(
31
+ self,
32
+ dim: int,
33
+ num_heads: int = 8,
34
+ qkv_bias: bool = False,
35
+ proj_bias: bool = True,
36
+ attn_drop: float = 0.0,
37
+ proj_drop: float = 0.0,
38
+ ) -> None:
39
+ super().__init__()
40
+ self.num_heads = num_heads
41
+ head_dim = dim // num_heads
42
+ self.scale = head_dim**-0.5
43
+
44
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
45
+ self.attn_drop = nn.Dropout(attn_drop)
46
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
47
+ self.proj_drop = nn.Dropout(proj_drop)
48
+
49
+ def forward(self, x: Tensor) -> Tensor:
50
+ B, N, C = x.shape
51
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
52
+
53
+ q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
54
+ attn = q @ k.transpose(-2, -1)
55
+
56
+ attn = attn.softmax(dim=-1)
57
+ attn = self.attn_drop(attn)
58
+
59
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
60
+ x = self.proj(x)
61
+ x = self.proj_drop(x)
62
+ return x
63
+
64
+
65
+ class MemEffAttention(Attention):
66
+ def forward(self, x: Tensor, attn_bias=None) -> Tensor:
67
+ if not XFORMERS_AVAILABLE:
68
+ assert attn_bias is None, "xFormers is required for nested tensors usage"
69
+ return super().forward(x)
70
+
71
+ B, N, C = x.shape
72
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
73
+
74
+ q, k, v = unbind(qkv, 2)
75
+
76
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
77
+ x = x.reshape([B, N, C])
78
+
79
+ x = self.proj(x)
80
+ x = self.proj_drop(x)
81
+ return x
82
+
83
+
depth_anything_v2/dinov2_layers/block.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ import logging
12
+ from typing import Callable, List, Any, Tuple, Dict
13
+
14
+ import torch
15
+ from torch import nn, Tensor
16
+
17
+ from .attention import Attention, MemEffAttention
18
+ from .drop_path import DropPath
19
+ from .layer_scale import LayerScale
20
+ from .mlp import Mlp
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ try:
27
+ from xformers.ops import fmha
28
+ from xformers.ops import scaled_index_add, index_select_cat
29
+
30
+ XFORMERS_AVAILABLE = True
31
+ except ImportError:
32
+ logger.warning("xFormers not available")
33
+ XFORMERS_AVAILABLE = False
34
+
35
+
36
+ class Block(nn.Module):
37
+ def __init__(
38
+ self,
39
+ dim: int,
40
+ num_heads: int,
41
+ mlp_ratio: float = 4.0,
42
+ qkv_bias: bool = False,
43
+ proj_bias: bool = True,
44
+ ffn_bias: bool = True,
45
+ drop: float = 0.0,
46
+ attn_drop: float = 0.0,
47
+ init_values=None,
48
+ drop_path: float = 0.0,
49
+ act_layer: Callable[..., nn.Module] = nn.GELU,
50
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
51
+ attn_class: Callable[..., nn.Module] = Attention,
52
+ ffn_layer: Callable[..., nn.Module] = Mlp,
53
+ ) -> None:
54
+ super().__init__()
55
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
56
+ self.norm1 = norm_layer(dim)
57
+ self.attn = attn_class(
58
+ dim,
59
+ num_heads=num_heads,
60
+ qkv_bias=qkv_bias,
61
+ proj_bias=proj_bias,
62
+ attn_drop=attn_drop,
63
+ proj_drop=drop,
64
+ )
65
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
66
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
67
+
68
+ self.norm2 = norm_layer(dim)
69
+ mlp_hidden_dim = int(dim * mlp_ratio)
70
+ self.mlp = ffn_layer(
71
+ in_features=dim,
72
+ hidden_features=mlp_hidden_dim,
73
+ act_layer=act_layer,
74
+ drop=drop,
75
+ bias=ffn_bias,
76
+ )
77
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
78
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
79
+
80
+ self.sample_drop_ratio = drop_path
81
+
82
+ def forward(self, x: Tensor) -> Tensor:
83
+ def attn_residual_func(x: Tensor) -> Tensor:
84
+ return self.ls1(self.attn(self.norm1(x)))
85
+
86
+ def ffn_residual_func(x: Tensor) -> Tensor:
87
+ return self.ls2(self.mlp(self.norm2(x)))
88
+
89
+ if self.training and self.sample_drop_ratio > 0.1:
90
+ # the overhead is compensated only for a drop path rate larger than 0.1
91
+ x = drop_add_residual_stochastic_depth(
92
+ x,
93
+ residual_func=attn_residual_func,
94
+ sample_drop_ratio=self.sample_drop_ratio,
95
+ )
96
+ x = drop_add_residual_stochastic_depth(
97
+ x,
98
+ residual_func=ffn_residual_func,
99
+ sample_drop_ratio=self.sample_drop_ratio,
100
+ )
101
+ elif self.training and self.sample_drop_ratio > 0.0:
102
+ x = x + self.drop_path1(attn_residual_func(x))
103
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
104
+ else:
105
+ x = x + attn_residual_func(x)
106
+ x = x + ffn_residual_func(x)
107
+ return x
108
+
109
+
110
+ def drop_add_residual_stochastic_depth(
111
+ x: Tensor,
112
+ residual_func: Callable[[Tensor], Tensor],
113
+ sample_drop_ratio: float = 0.0,
114
+ ) -> Tensor:
115
+ # 1) extract subset using permutation
116
+ b, n, d = x.shape
117
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
118
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
119
+ x_subset = x[brange]
120
+
121
+ # 2) apply residual_func to get residual
122
+ residual = residual_func(x_subset)
123
+
124
+ x_flat = x.flatten(1)
125
+ residual = residual.flatten(1)
126
+
127
+ residual_scale_factor = b / sample_subset_size
128
+
129
+ # 3) add the residual
130
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
131
+ return x_plus_residual.view_as(x)
132
+
133
+
134
+ def get_branges_scales(x, sample_drop_ratio=0.0):
135
+ b, n, d = x.shape
136
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
137
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
138
+ residual_scale_factor = b / sample_subset_size
139
+ return brange, residual_scale_factor
140
+
141
+
142
+ def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
143
+ if scaling_vector is None:
144
+ x_flat = x.flatten(1)
145
+ residual = residual.flatten(1)
146
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
147
+ else:
148
+ x_plus_residual = scaled_index_add(
149
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
150
+ )
151
+ return x_plus_residual
152
+
153
+
154
+ attn_bias_cache: Dict[Tuple, Any] = {}
155
+
156
+
157
+ def get_attn_bias_and_cat(x_list, branges=None):
158
+ """
159
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
160
+ """
161
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
162
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
163
+ if all_shapes not in attn_bias_cache.keys():
164
+ seqlens = []
165
+ for b, x in zip(batch_sizes, x_list):
166
+ for _ in range(b):
167
+ seqlens.append(x.shape[1])
168
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
169
+ attn_bias._batch_sizes = batch_sizes
170
+ attn_bias_cache[all_shapes] = attn_bias
171
+
172
+ if branges is not None:
173
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
174
+ else:
175
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
176
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
177
+
178
+ return attn_bias_cache[all_shapes], cat_tensors
179
+
180
+
181
+ def drop_add_residual_stochastic_depth_list(
182
+ x_list: List[Tensor],
183
+ residual_func: Callable[[Tensor, Any], Tensor],
184
+ sample_drop_ratio: float = 0.0,
185
+ scaling_vector=None,
186
+ ) -> Tensor:
187
+ # 1) generate random set of indices for dropping samples in the batch
188
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
189
+ branges = [s[0] for s in branges_scales]
190
+ residual_scale_factors = [s[1] for s in branges_scales]
191
+
192
+ # 2) get attention bias and index+concat the tensors
193
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
194
+
195
+ # 3) apply residual_func to get residual, and split the result
196
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
197
+
198
+ outputs = []
199
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
200
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
201
+ return outputs
202
+
203
+
204
+ class NestedTensorBlock(Block):
205
+ def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
206
+ """
207
+ x_list contains a list of tensors to nest together and run
208
+ """
209
+ assert isinstance(self.attn, MemEffAttention)
210
+
211
+ if self.training and self.sample_drop_ratio > 0.0:
212
+
213
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
214
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
215
+
216
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
217
+ return self.mlp(self.norm2(x))
218
+
219
+ x_list = drop_add_residual_stochastic_depth_list(
220
+ x_list,
221
+ residual_func=attn_residual_func,
222
+ sample_drop_ratio=self.sample_drop_ratio,
223
+ scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
224
+ )
225
+ x_list = drop_add_residual_stochastic_depth_list(
226
+ x_list,
227
+ residual_func=ffn_residual_func,
228
+ sample_drop_ratio=self.sample_drop_ratio,
229
+ scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
230
+ )
231
+ return x_list
232
+ else:
233
+
234
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
235
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
236
+
237
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
238
+ return self.ls2(self.mlp(self.norm2(x)))
239
+
240
+ attn_bias, x = get_attn_bias_and_cat(x_list)
241
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
242
+ x = x + ffn_residual_func(x)
243
+ return attn_bias.split(x)
244
+
245
+ def forward(self, x_or_x_list):
246
+ if isinstance(x_or_x_list, Tensor):
247
+ return super().forward(x_or_x_list)
248
+ elif isinstance(x_or_x_list, list):
249
+ assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
250
+ return self.forward_nested(x_or_x_list)
251
+ else:
252
+ raise AssertionError
depth_anything_v2/dinov2_layers/drop_path.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
10
+
11
+
12
+ from torch import nn
13
+
14
+
15
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
16
+ if drop_prob == 0.0 or not training:
17
+ return x
18
+ keep_prob = 1 - drop_prob
19
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
20
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
21
+ if keep_prob > 0.0:
22
+ random_tensor.div_(keep_prob)
23
+ output = x * random_tensor
24
+ return output
25
+
26
+
27
+ class DropPath(nn.Module):
28
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
29
+
30
+ def __init__(self, drop_prob=None):
31
+ super(DropPath, self).__init__()
32
+ self.drop_prob = drop_prob
33
+
34
+ def forward(self, x):
35
+ return drop_path(x, self.drop_prob, self.training)
depth_anything_v2/dinov2_layers/layer_scale.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
8
+
9
+ from typing import Union
10
+
11
+ import torch
12
+ from torch import Tensor
13
+ from torch import nn
14
+
15
+
16
+ class LayerScale(nn.Module):
17
+ def __init__(
18
+ self,
19
+ dim: int,
20
+ init_values: Union[float, Tensor] = 1e-5,
21
+ inplace: bool = False,
22
+ ) -> None:
23
+ super().__init__()
24
+ self.inplace = inplace
25
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
26
+
27
+ def forward(self, x: Tensor) -> Tensor:
28
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
depth_anything_v2/dinov2_layers/mlp.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
10
+
11
+
12
+ from typing import Callable, Optional
13
+
14
+ from torch import Tensor, nn
15
+
16
+
17
+ class Mlp(nn.Module):
18
+ def __init__(
19
+ self,
20
+ in_features: int,
21
+ hidden_features: Optional[int] = None,
22
+ out_features: Optional[int] = None,
23
+ act_layer: Callable[..., nn.Module] = nn.GELU,
24
+ drop: float = 0.0,
25
+ bias: bool = True,
26
+ ) -> None:
27
+ super().__init__()
28
+ out_features = out_features or in_features
29
+ hidden_features = hidden_features or in_features
30
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
31
+ self.act = act_layer()
32
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
33
+ self.drop = nn.Dropout(drop)
34
+
35
+ def forward(self, x: Tensor) -> Tensor:
36
+ x = self.fc1(x)
37
+ x = self.act(x)
38
+ x = self.drop(x)
39
+ x = self.fc2(x)
40
+ x = self.drop(x)
41
+ return x
depth_anything_v2/dinov2_layers/patch_embed.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ from typing import Callable, Optional, Tuple, Union
12
+
13
+ from torch import Tensor
14
+ import torch.nn as nn
15
+
16
+
17
+ def make_2tuple(x):
18
+ if isinstance(x, tuple):
19
+ assert len(x) == 2
20
+ return x
21
+
22
+ assert isinstance(x, int)
23
+ return (x, x)
24
+
25
+
26
+ class PatchEmbed(nn.Module):
27
+ """
28
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
29
+
30
+ Args:
31
+ img_size: Image size.
32
+ patch_size: Patch token size.
33
+ in_chans: Number of input image channels.
34
+ embed_dim: Number of linear projection output channels.
35
+ norm_layer: Normalization layer.
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ img_size: Union[int, Tuple[int, int]] = 224,
41
+ patch_size: Union[int, Tuple[int, int]] = 16,
42
+ in_chans: int = 3,
43
+ embed_dim: int = 768,
44
+ norm_layer: Optional[Callable] = None,
45
+ flatten_embedding: bool = True,
46
+ ) -> None:
47
+ super().__init__()
48
+
49
+ image_HW = make_2tuple(img_size)
50
+ patch_HW = make_2tuple(patch_size)
51
+ patch_grid_size = (
52
+ image_HW[0] // patch_HW[0],
53
+ image_HW[1] // patch_HW[1],
54
+ )
55
+
56
+ self.img_size = image_HW
57
+ self.patch_size = patch_HW
58
+ self.patches_resolution = patch_grid_size
59
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
60
+
61
+ self.in_chans = in_chans
62
+ self.embed_dim = embed_dim
63
+
64
+ self.flatten_embedding = flatten_embedding
65
+
66
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
67
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
68
+
69
+ def forward(self, x: Tensor) -> Tensor:
70
+ _, _, H, W = x.shape
71
+ patch_H, patch_W = self.patch_size
72
+
73
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
74
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
75
+
76
+ x = self.proj(x) # B C H W
77
+ H, W = x.size(2), x.size(3)
78
+ x = x.flatten(2).transpose(1, 2) # B HW C
79
+ x = self.norm(x)
80
+ if not self.flatten_embedding:
81
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
82
+ return x
83
+
84
+ def flops(self) -> float:
85
+ Ho, Wo = self.patches_resolution
86
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
87
+ if self.norm is not None:
88
+ flops += Ho * Wo * self.embed_dim
89
+ return flops
depth_anything_v2/dinov2_layers/swiglu_ffn.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Callable, Optional
8
+
9
+ from torch import Tensor, nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class SwiGLUFFN(nn.Module):
14
+ def __init__(
15
+ self,
16
+ in_features: int,
17
+ hidden_features: Optional[int] = None,
18
+ out_features: Optional[int] = None,
19
+ act_layer: Callable[..., nn.Module] = None,
20
+ drop: float = 0.0,
21
+ bias: bool = True,
22
+ ) -> None:
23
+ super().__init__()
24
+ out_features = out_features or in_features
25
+ hidden_features = hidden_features or in_features
26
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
27
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
28
+
29
+ def forward(self, x: Tensor) -> Tensor:
30
+ x12 = self.w12(x)
31
+ x1, x2 = x12.chunk(2, dim=-1)
32
+ hidden = F.silu(x1) * x2
33
+ return self.w3(hidden)
34
+
35
+
36
+ try:
37
+ from xformers.ops import SwiGLU
38
+
39
+ XFORMERS_AVAILABLE = True
40
+ except ImportError:
41
+ SwiGLU = SwiGLUFFN
42
+ XFORMERS_AVAILABLE = False
43
+
44
+
45
+ class SwiGLUFFNFused(SwiGLU):
46
+ def __init__(
47
+ self,
48
+ in_features: int,
49
+ hidden_features: Optional[int] = None,
50
+ out_features: Optional[int] = None,
51
+ act_layer: Callable[..., nn.Module] = None,
52
+ drop: float = 0.0,
53
+ bias: bool = True,
54
+ ) -> None:
55
+ out_features = out_features or in_features
56
+ hidden_features = hidden_features or in_features
57
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
58
+ super().__init__(
59
+ in_features=in_features,
60
+ hidden_features=hidden_features,
61
+ out_features=out_features,
62
+ bias=bias,
63
+ )
depth_anything_v2/dpt.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torchvision.transforms import Compose
6
+
7
+ from .dinov2 import DINOv2
8
+ from .util.blocks import FeatureFusionBlock, _make_scratch
9
+ from .util.transform import Resize, NormalizeImage, PrepareForNet
10
+
11
+
12
+ def _make_fusion_block(features, use_bn, size=None):
13
+ return FeatureFusionBlock(
14
+ features,
15
+ nn.ReLU(False),
16
+ deconv=False,
17
+ bn=use_bn,
18
+ expand=False,
19
+ align_corners=True,
20
+ size=size,
21
+ )
22
+
23
+
24
+ class ConvBlock(nn.Module):
25
+ def __init__(self, in_feature, out_feature):
26
+ super().__init__()
27
+
28
+ self.conv_block = nn.Sequential(
29
+ nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
30
+ nn.BatchNorm2d(out_feature),
31
+ nn.ReLU(True)
32
+ )
33
+
34
+ def forward(self, x):
35
+ return self.conv_block(x)
36
+
37
+
38
+ class DPTHead(nn.Module):
39
+ def __init__(
40
+ self,
41
+ in_channels,
42
+ features=256,
43
+ use_bn=False,
44
+ out_channels=[256, 512, 1024, 1024],
45
+ use_clstoken=False
46
+ ):
47
+ super(DPTHead, self).__init__()
48
+
49
+ self.use_clstoken = use_clstoken
50
+
51
+ self.projects = nn.ModuleList([
52
+ nn.Conv2d(
53
+ in_channels=in_channels,
54
+ out_channels=out_channel,
55
+ kernel_size=1,
56
+ stride=1,
57
+ padding=0,
58
+ ) for out_channel in out_channels
59
+ ])
60
+
61
+ self.resize_layers = nn.ModuleList([
62
+ nn.ConvTranspose2d(
63
+ in_channels=out_channels[0],
64
+ out_channels=out_channels[0],
65
+ kernel_size=4,
66
+ stride=4,
67
+ padding=0),
68
+ nn.ConvTranspose2d(
69
+ in_channels=out_channels[1],
70
+ out_channels=out_channels[1],
71
+ kernel_size=2,
72
+ stride=2,
73
+ padding=0),
74
+ nn.Identity(),
75
+ nn.Conv2d(
76
+ in_channels=out_channels[3],
77
+ out_channels=out_channels[3],
78
+ kernel_size=3,
79
+ stride=2,
80
+ padding=1)
81
+ ])
82
+
83
+ if use_clstoken:
84
+ self.readout_projects = nn.ModuleList()
85
+ for _ in range(len(self.projects)):
86
+ self.readout_projects.append(
87
+ nn.Sequential(
88
+ nn.Linear(2 * in_channels, in_channels),
89
+ nn.GELU()))
90
+
91
+ self.scratch = _make_scratch(
92
+ out_channels,
93
+ features,
94
+ groups=1,
95
+ expand=False,
96
+ )
97
+
98
+ self.scratch.stem_transpose = None
99
+
100
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
101
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
102
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
103
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
104
+
105
+ head_features_1 = features
106
+ head_features_2 = 32
107
+
108
+ self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
109
+ self.scratch.output_conv2 = nn.Sequential(
110
+ nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
111
+ nn.ReLU(True),
112
+ nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
113
+ nn.ReLU(True),
114
+ nn.Identity(),
115
+ )
116
+
117
+ def forward(self, out_features, patch_h, patch_w):
118
+ out = []
119
+ for i, x in enumerate(out_features):
120
+ if self.use_clstoken:
121
+ x, cls_token = x[0], x[1]
122
+ readout = cls_token.unsqueeze(1).expand_as(x)
123
+ x = self.readout_projects[i](torch.cat((x, readout), -1))
124
+ else:
125
+ x = x[0]
126
+
127
+ x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
128
+
129
+ x = self.projects[i](x)
130
+ x = self.resize_layers[i](x)
131
+
132
+ out.append(x)
133
+
134
+ layer_1, layer_2, layer_3, layer_4 = out
135
+
136
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
137
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
138
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
139
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
140
+
141
+ path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
142
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
143
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
144
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
145
+
146
+ out = self.scratch.output_conv1(path_1)
147
+ out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
148
+ out = self.scratch.output_conv2(out)
149
+
150
+ return out
151
+
152
+
153
+ class DepthAnythingV2(nn.Module):
154
+ def __init__(
155
+ self,
156
+ encoder='vitl',
157
+ features=256,
158
+ out_channels=[256, 512, 1024, 1024],
159
+ use_bn=False,
160
+ use_clstoken=False
161
+ ):
162
+ super(DepthAnythingV2, self).__init__()
163
+
164
+ self.intermediate_layer_idx = {
165
+ 'vits': [2, 5, 8, 11],
166
+ 'vitb': [2, 5, 8, 11],
167
+ 'vitl': [4, 11, 17, 23],
168
+ 'vitg': [9, 19, 29, 39]
169
+ }
170
+
171
+ self.encoder = encoder
172
+ self.pretrained = DINOv2(model_name=encoder)
173
+
174
+ self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
175
+
176
+ def forward(self, x):
177
+ patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
178
+
179
+ features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
180
+
181
+ depth = self.depth_head(features, patch_h, patch_w)
182
+ depth = F.relu(depth)
183
+
184
+ return depth.squeeze(1)
185
+
186
+ @torch.no_grad()
187
+ def infer_image(self, raw_image, input_size=518):
188
+ image, (h, w) = self.image2tensor(raw_image, input_size)
189
+
190
+ depth = self.forward(image)
191
+
192
+ depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
193
+
194
+ return depth.cpu().numpy()
195
+
196
+ def image2tensor(self, raw_image, input_size=518):
197
+ transform = Compose([
198
+ Resize(
199
+ width=input_size,
200
+ height=input_size,
201
+ resize_target=False,
202
+ keep_aspect_ratio=True,
203
+ ensure_multiple_of=14,
204
+ resize_method='lower_bound',
205
+ image_interpolation_method=cv2.INTER_CUBIC,
206
+ ),
207
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
208
+ PrepareForNet(),
209
+ ])
210
+
211
+ h, w = raw_image.shape[:2]
212
+
213
+ image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
214
+
215
+ image = transform({'image': image})['image']
216
+ image = torch.from_numpy(image).unsqueeze(0)
217
+
218
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
219
+ image = image.to(DEVICE)
220
+
221
+ return image, (h, w)
depth_anything_v2/util/blocks.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
5
+ scratch = nn.Module()
6
+
7
+ out_shape1 = out_shape
8
+ out_shape2 = out_shape
9
+ out_shape3 = out_shape
10
+ if len(in_shape) >= 4:
11
+ out_shape4 = out_shape
12
+
13
+ if expand:
14
+ out_shape1 = out_shape
15
+ out_shape2 = out_shape * 2
16
+ out_shape3 = out_shape * 4
17
+ if len(in_shape) >= 4:
18
+ out_shape4 = out_shape * 8
19
+
20
+ scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
21
+ scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
22
+ scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
23
+ if len(in_shape) >= 4:
24
+ scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
25
+
26
+ return scratch
27
+
28
+
29
+ class ResidualConvUnit(nn.Module):
30
+ """Residual convolution module.
31
+ """
32
+
33
+ def __init__(self, features, activation, bn):
34
+ """Init.
35
+
36
+ Args:
37
+ features (int): number of features
38
+ """
39
+ super().__init__()
40
+
41
+ self.bn = bn
42
+
43
+ self.groups=1
44
+
45
+ self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
46
+
47
+ self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
48
+
49
+ if self.bn == True:
50
+ self.bn1 = nn.BatchNorm2d(features)
51
+ self.bn2 = nn.BatchNorm2d(features)
52
+
53
+ self.activation = activation
54
+
55
+ self.skip_add = nn.quantized.FloatFunctional()
56
+
57
+ def forward(self, x):
58
+ """Forward pass.
59
+
60
+ Args:
61
+ x (tensor): input
62
+
63
+ Returns:
64
+ tensor: output
65
+ """
66
+
67
+ out = self.activation(x)
68
+ out = self.conv1(out)
69
+ if self.bn == True:
70
+ out = self.bn1(out)
71
+
72
+ out = self.activation(out)
73
+ out = self.conv2(out)
74
+ if self.bn == True:
75
+ out = self.bn2(out)
76
+
77
+ if self.groups > 1:
78
+ out = self.conv_merge(out)
79
+
80
+ return self.skip_add.add(out, x)
81
+
82
+
83
+ class FeatureFusionBlock(nn.Module):
84
+ """Feature fusion block.
85
+ """
86
+
87
+ def __init__(
88
+ self,
89
+ features,
90
+ activation,
91
+ deconv=False,
92
+ bn=False,
93
+ expand=False,
94
+ align_corners=True,
95
+ size=None
96
+ ):
97
+ """Init.
98
+
99
+ Args:
100
+ features (int): number of features
101
+ """
102
+ super(FeatureFusionBlock, self).__init__()
103
+
104
+ self.deconv = deconv
105
+ self.align_corners = align_corners
106
+
107
+ self.groups=1
108
+
109
+ self.expand = expand
110
+ out_features = features
111
+ if self.expand == True:
112
+ out_features = features // 2
113
+
114
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
115
+
116
+ self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
117
+ self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
118
+
119
+ self.skip_add = nn.quantized.FloatFunctional()
120
+
121
+ self.size=size
122
+
123
+ def forward(self, *xs, size=None):
124
+ """Forward pass.
125
+
126
+ Returns:
127
+ tensor: output
128
+ """
129
+ output = xs[0]
130
+
131
+ if len(xs) == 2:
132
+ res = self.resConfUnit1(xs[1])
133
+ output = self.skip_add.add(output, res)
134
+
135
+ output = self.resConfUnit2(output)
136
+
137
+ if (size is None) and (self.size is None):
138
+ modifier = {"scale_factor": 2}
139
+ elif size is None:
140
+ modifier = {"size": self.size}
141
+ else:
142
+ modifier = {"size": size}
143
+
144
+ output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
145
+
146
+ output = self.out_conv(output)
147
+
148
+ return output
depth_anything_v2/util/transform.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+
5
+ class Resize(object):
6
+ """Resize sample to given size (width, height).
7
+ """
8
+
9
+ def __init__(
10
+ self,
11
+ width,
12
+ height,
13
+ resize_target=True,
14
+ keep_aspect_ratio=False,
15
+ ensure_multiple_of=1,
16
+ resize_method="lower_bound",
17
+ image_interpolation_method=cv2.INTER_AREA,
18
+ ):
19
+ """Init.
20
+
21
+ Args:
22
+ width (int): desired output width
23
+ height (int): desired output height
24
+ resize_target (bool, optional):
25
+ True: Resize the full sample (image, mask, target).
26
+ False: Resize image only.
27
+ Defaults to True.
28
+ keep_aspect_ratio (bool, optional):
29
+ True: Keep the aspect ratio of the input sample.
30
+ Output sample might not have the given width and height, and
31
+ resize behaviour depends on the parameter 'resize_method'.
32
+ Defaults to False.
33
+ ensure_multiple_of (int, optional):
34
+ Output width and height is constrained to be multiple of this parameter.
35
+ Defaults to 1.
36
+ resize_method (str, optional):
37
+ "lower_bound": Output will be at least as large as the given size.
38
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
39
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
40
+ Defaults to "lower_bound".
41
+ """
42
+ self.__width = width
43
+ self.__height = height
44
+
45
+ self.__resize_target = resize_target
46
+ self.__keep_aspect_ratio = keep_aspect_ratio
47
+ self.__multiple_of = ensure_multiple_of
48
+ self.__resize_method = resize_method
49
+ self.__image_interpolation_method = image_interpolation_method
50
+
51
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
52
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
53
+
54
+ if max_val is not None and y > max_val:
55
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
56
+
57
+ if y < min_val:
58
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
59
+
60
+ return y
61
+
62
+ def get_size(self, width, height):
63
+ # determine new height and width
64
+ scale_height = self.__height / height
65
+ scale_width = self.__width / width
66
+
67
+ if self.__keep_aspect_ratio:
68
+ if self.__resize_method == "lower_bound":
69
+ # scale such that output size is lower bound
70
+ if scale_width > scale_height:
71
+ # fit width
72
+ scale_height = scale_width
73
+ else:
74
+ # fit height
75
+ scale_width = scale_height
76
+ elif self.__resize_method == "upper_bound":
77
+ # scale such that output size is upper bound
78
+ if scale_width < scale_height:
79
+ # fit width
80
+ scale_height = scale_width
81
+ else:
82
+ # fit height
83
+ scale_width = scale_height
84
+ elif self.__resize_method == "minimal":
85
+ # scale as least as possbile
86
+ if abs(1 - scale_width) < abs(1 - scale_height):
87
+ # fit width
88
+ scale_height = scale_width
89
+ else:
90
+ # fit height
91
+ scale_width = scale_height
92
+ else:
93
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
94
+
95
+ if self.__resize_method == "lower_bound":
96
+ new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
97
+ new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
98
+ elif self.__resize_method == "upper_bound":
99
+ new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
100
+ new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
101
+ elif self.__resize_method == "minimal":
102
+ new_height = self.constrain_to_multiple_of(scale_height * height)
103
+ new_width = self.constrain_to_multiple_of(scale_width * width)
104
+ else:
105
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
106
+
107
+ return (new_width, new_height)
108
+
109
+ def __call__(self, sample):
110
+ width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
111
+
112
+ # resize sample
113
+ sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
114
+
115
+ if self.__resize_target:
116
+ if "depth" in sample:
117
+ sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
118
+
119
+ if "mask" in sample:
120
+ sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
121
+
122
+ return sample
123
+
124
+
125
+ class NormalizeImage(object):
126
+ """Normlize image by given mean and std.
127
+ """
128
+
129
+ def __init__(self, mean, std):
130
+ self.__mean = mean
131
+ self.__std = std
132
+
133
+ def __call__(self, sample):
134
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
135
+
136
+ return sample
137
+
138
+
139
+ class PrepareForNet(object):
140
+ """Prepare sample for usage as network input.
141
+ """
142
+
143
+ def __init__(self):
144
+ pass
145
+
146
+ def __call__(self, sample):
147
+ image = np.transpose(sample["image"], (2, 0, 1))
148
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
149
+
150
+ if "depth" in sample:
151
+ depth = sample["depth"].astype(np.float32)
152
+ sample["depth"] = np.ascontiguousarray(depth)
153
+
154
+ if "mask" in sample:
155
+ sample["mask"] = sample["mask"].astype(np.float32)
156
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
157
+
158
+ return sample