Spaces:
Running
on
Zero
Running
on
Zero
from typing import TypedDict | |
import torch | |
import torchaudio | |
class AudioDict(TypedDict): | |
"""Comfy's representation of AUDIO data.""" | |
sample_rate: int | |
waveform: torch.Tensor | |
AudioData = AudioDict | list[AudioDict] | |
class MtbAudio: | |
"""Base class for audio processing.""" | |
def is_stereo( | |
cls, | |
audios: AudioData, | |
) -> bool: | |
if isinstance(audios, list): | |
return any(cls.is_stereo(audio) for audio in audios) | |
else: | |
return audios["waveform"].shape[1] == 2 | |
def resample(audio: AudioDict, common_sample_rate: int) -> AudioDict: | |
if audio["sample_rate"] != common_sample_rate: | |
resampler = torchaudio.transforms.Resample( | |
orig_freq=audio["sample_rate"], new_freq=common_sample_rate | |
) | |
return { | |
"sample_rate": common_sample_rate, | |
"waveform": resampler(audio["waveform"]), | |
} | |
else: | |
return audio | |
def to_stereo(audio: AudioDict) -> AudioDict: | |
if audio["waveform"].shape[1] == 1: | |
return { | |
"sample_rate": audio["sample_rate"], | |
"waveform": torch.cat( | |
[audio["waveform"], audio["waveform"]], dim=1 | |
), | |
} | |
else: | |
return audio | |
def preprocess_audios( | |
cls, audios: list[AudioDict] | |
) -> tuple[list[AudioDict], bool, int]: | |
max_sample_rate = max([audio["sample_rate"] for audio in audios]) | |
resampled_audios = [ | |
cls.resample(audio, max_sample_rate) for audio in audios | |
] | |
is_stereo = cls.is_stereo(audios) | |
if is_stereo: | |
audios = [cls.to_stereo(audio) for audio in resampled_audios] | |
return (audios, is_stereo, max_sample_rate) | |
class MTB_AudioCut(MtbAudio): | |
"""Basic audio cutter, values are in ms.""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"audio": ("AUDIO",), | |
"length": ( | |
("FLOAT"), | |
{ | |
"default": 1000.0, | |
"min": 0.0, | |
"max": 999999.0, | |
"step": 1, | |
}, | |
), | |
"offset": ( | |
("FLOAT"), | |
{"default": 0.0, "min": 0.0, "max": 999999.0, "step": 1}, | |
), | |
}, | |
} | |
RETURN_TYPES = ("AUDIO",) | |
RETURN_NAMES = ("cut_audio",) | |
CATEGORY = "mtb/audio" | |
FUNCTION = "cut" | |
def cut(self, audio: AudioDict, length: float, offset: float): | |
sample_rate = audio["sample_rate"] | |
start_idx = int(offset * sample_rate / 1000) | |
end_idx = min( | |
start_idx + int(length * sample_rate / 1000), | |
audio["waveform"].shape[-1], | |
) | |
cut_waveform = audio["waveform"][:, :, start_idx:end_idx] | |
return ( | |
{ | |
"sample_rate": sample_rate, | |
"waveform": cut_waveform, | |
}, | |
) | |
class MTB_AudioStack(MtbAudio): | |
"""Stack/Overlay audio inputs (dynamic inputs). | |
- pad audios to the longest inputs. | |
- resample audios to the highest sample rate in the inputs. | |
- convert them all to stereo if one of the inputs is. | |
""" | |
def INPUT_TYPES(cls): | |
return {"required": {}} | |
RETURN_TYPES = ("AUDIO",) | |
RETURN_NAMES = ("stacked_audio",) | |
CATEGORY = "mtb/audio" | |
FUNCTION = "stack" | |
def stack(self, **kwargs: AudioDict) -> tuple[AudioDict]: | |
audios, is_stereo, max_rate = self.preprocess_audios( | |
list(kwargs.values()) | |
) | |
max_length = max([audio["waveform"].shape[-1] for audio in audios]) | |
padded_audios: list[torch.Tensor] = [] | |
for audio in audios: | |
padding = torch.zeros( | |
( | |
1, | |
2 if is_stereo else 1, | |
max_length - audio["waveform"].shape[-1], | |
) | |
) | |
padded_audio = torch.cat([audio["waveform"], padding], dim=-1) | |
padded_audios.append(padded_audio) | |
stacked_waveform = torch.stack(padded_audios, dim=0).sum(dim=0) | |
return ( | |
{ | |
"sample_rate": max_rate, | |
"waveform": stacked_waveform, | |
}, | |
) | |
class MTB_AudioSequence(MtbAudio): | |
"""Sequence audio inputs (dynamic inputs). | |
- adding silence_duration between each segment | |
can now also be negative to overlap the clips, safely bound | |
to the the input length. | |
- resample audios to the highest sample rate in the inputs. | |
- convert them all to stereo if one of the inputs is. | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"silence_duration": ( | |
("FLOAT"), | |
{"default": 0.0, "min": -999.0, "max": 999, "step": 0.01}, | |
) | |
}, | |
} | |
RETURN_TYPES = ("AUDIO",) | |
RETURN_NAMES = ("sequenced_audio",) | |
CATEGORY = "mtb/audio" | |
FUNCTION = "sequence" | |
def sequence(self, silence_duration: float, **kwargs: AudioDict): | |
audios, is_stereo, max_rate = self.preprocess_audios( | |
list(kwargs.values()) | |
) | |
sequence: list[torch.Tensor] = [] | |
for i, audio in enumerate(audios): | |
if i > 0: | |
if silence_duration > 0: | |
silence = torch.zeros( | |
( | |
1, | |
2 if is_stereo else 1, | |
int(silence_duration * max_rate), | |
) | |
) | |
sequence.append(silence) | |
elif silence_duration < 0: | |
overlap = int(abs(silence_duration) * max_rate) | |
previous_audio = sequence[-1] | |
overlap = min( | |
overlap, | |
previous_audio.shape[-1], | |
audio["waveform"].shape[-1], | |
) | |
if overlap > 0: | |
overlap_part = ( | |
previous_audio[:, :, -overlap:] | |
+ audio["waveform"][:, :, :overlap] | |
) | |
sequence[-1] = previous_audio[:, :, :-overlap] | |
sequence.append(overlap_part) | |
audio["waveform"] = audio["waveform"][:, :, overlap:] | |
sequence.append(audio["waveform"]) | |
sequenced_waveform = torch.cat(sequence, dim=-1) | |
return ( | |
{ | |
"sample_rate": max_rate, | |
"waveform": sequenced_waveform, | |
}, | |
) | |
__nodes__ = [MTB_AudioSequence, MTB_AudioStack, MTB_AudioCut] | |