Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import time | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms as T | |
| import io | |
| import base64 | |
| import random | |
| import math | |
| import os | |
| import re | |
| import json | |
| from PIL.PngImagePlugin import PngInfo | |
| try: | |
| import cv2 | |
| except: | |
| print("OpenCV not installed") | |
| pass | |
| from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps | |
| from nodes import MAX_RESOLUTION, SaveImage | |
| from comfy_extras.nodes_mask import ImageCompositeMasked | |
| from comfy.cli_args import args | |
| from comfy.utils import ProgressBar, common_upscale | |
| import folder_paths | |
| import model_management | |
| script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
| class ImagePass: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| }, | |
| "optional": { | |
| "image": ("IMAGE",), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "passthrough" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Passes the image through without modifying it. | |
| """ | |
| def passthrough(self, image=None): | |
| return image, | |
| class ColorMatch: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "image_ref": ("IMAGE",), | |
| "image_target": ("IMAGE",), | |
| "method": ( | |
| [ | |
| 'mkl', | |
| 'hm', | |
| 'reinhard', | |
| 'mvgd', | |
| 'hm-mvgd-hm', | |
| 'hm-mkl-hm', | |
| ], { | |
| "default": 'mkl' | |
| }), | |
| }, | |
| "optional": { | |
| "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
| } | |
| } | |
| CATEGORY = "KJNodes/image" | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "colormatch" | |
| DESCRIPTION = """ | |
| color-matcher enables color transfer across images which comes in handy for automatic | |
| color-grading of photographs, paintings and film sequences as well as light-field | |
| and stopmotion corrections. | |
| The methods behind the mappings are based on the approach from Reinhard et al., | |
| the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution | |
| to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram | |
| matching. As shown below our HM-MVGD-HM compound outperforms existing methods. | |
| https://github.com/hahnec/color-matcher/ | |
| """ | |
| def colormatch(self, image_ref, image_target, method, strength=1.0): | |
| try: | |
| from color_matcher import ColorMatcher | |
| except: | |
| raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher") | |
| cm = ColorMatcher() | |
| image_ref = image_ref.cpu() | |
| image_target = image_target.cpu() | |
| batch_size = image_target.size(0) | |
| out = [] | |
| images_target = image_target.squeeze() | |
| images_ref = image_ref.squeeze() | |
| image_ref_np = images_ref.numpy() | |
| images_target_np = images_target.numpy() | |
| if image_ref.size(0) > 1 and image_ref.size(0) != batch_size: | |
| raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.") | |
| for i in range(batch_size): | |
| image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy() | |
| image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy() | |
| try: | |
| image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method) | |
| except BaseException as e: | |
| print(f"Error occurred during transfer: {e}") | |
| break | |
| # Apply the strength multiplier | |
| image_result = image_target_np + strength * (image_result - image_target_np) | |
| out.append(torch.from_numpy(image_result)) | |
| out = torch.stack(out, dim=0).to(torch.float32) | |
| out.clamp_(0, 1) | |
| return (out,) | |
| class SaveImageWithAlpha: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"images": ("IMAGE", ), | |
| "mask": ("MASK", ), | |
| "filename_prefix": ("STRING", {"default": "ComfyUI"})}, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save_images_alpha" | |
| OUTPUT_NODE = True | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Saves an image and mask as .PNG with the mask as the alpha channel. | |
| """ | |
| def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None): | |
| from PIL.PngImagePlugin import PngInfo | |
| filename_prefix += self.prefix_append | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) | |
| results = list() | |
| if mask.dtype == torch.float16: | |
| mask = mask.to(torch.float32) | |
| def file_counter(): | |
| max_counter = 0 | |
| # Loop through the existing files | |
| for existing_file in os.listdir(full_output_folder): | |
| # Check if the file matches the expected format | |
| match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file) | |
| if match: | |
| # Extract the numeric portion of the filename | |
| file_counter = int(match.group(1)) | |
| # Update the maximum counter value if necessary | |
| if file_counter > max_counter: | |
| max_counter = file_counter | |
| return max_counter | |
| for image, alpha in zip(images, mask): | |
| i = 255. * image.cpu().numpy() | |
| a = 255. * alpha.cpu().numpy() | |
| img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
| # Resize the mask to match the image size | |
| a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS) | |
| a_resized = np.clip(a_resized, 0, 255).astype(np.uint8) | |
| img.putalpha(Image.fromarray(a_resized, mode='L')) | |
| metadata = None | |
| if not args.disable_metadata: | |
| metadata = PngInfo() | |
| if prompt is not None: | |
| metadata.add_text("prompt", json.dumps(prompt)) | |
| if extra_pnginfo is not None: | |
| for x in extra_pnginfo: | |
| metadata.add_text(x, json.dumps(extra_pnginfo[x])) | |
| # Increment the counter by 1 to get the next available value | |
| counter = file_counter() + 1 | |
| file = f"{filename}_{counter:05}.png" | |
| img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) | |
| results.append({ | |
| "filename": file, | |
| "subfolder": subfolder, | |
| "type": self.type | |
| }) | |
| return { "ui": { "images": results } } | |
| class ImageConcanate: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image1": ("IMAGE",), | |
| "image2": ("IMAGE",), | |
| "direction": ( | |
| [ 'right', | |
| 'down', | |
| 'left', | |
| 'up', | |
| ], | |
| { | |
| "default": 'right' | |
| }), | |
| "match_image_size": ("BOOLEAN", {"default": True}), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "concanate" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Concatenates the image2 to image1 in the specified direction. | |
| """ | |
| def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None): | |
| # Check if the batch sizes are different | |
| batch_size1 = image1.shape[0] | |
| batch_size2 = image2.shape[0] | |
| if batch_size1 != batch_size2: | |
| # Calculate the number of repetitions needed | |
| max_batch_size = max(batch_size1, batch_size2) | |
| repeats1 = max_batch_size // batch_size1 | |
| repeats2 = max_batch_size // batch_size2 | |
| # Repeat the images to match the largest batch size | |
| image1 = image1.repeat(repeats1, 1, 1, 1) | |
| image2 = image2.repeat(repeats2, 1, 1, 1) | |
| if match_image_size: | |
| # Use first_image_shape if provided; otherwise, default to image1's shape | |
| target_shape = first_image_shape if first_image_shape is not None else image1.shape | |
| original_height = image2.shape[1] | |
| original_width = image2.shape[2] | |
| original_aspect_ratio = original_width / original_height | |
| if direction in ['left', 'right']: | |
| # Match the height and adjust the width to preserve aspect ratio | |
| target_height = target_shape[1] # B, H, W, C format | |
| target_width = int(target_height * original_aspect_ratio) | |
| elif direction in ['up', 'down']: | |
| # Match the width and adjust the height to preserve aspect ratio | |
| target_width = target_shape[2] # B, H, W, C format | |
| target_height = int(target_width / original_aspect_ratio) | |
| # Adjust image2 to the expected format for common_upscale | |
| image2_for_upscale = image2.movedim(-1, 1) # Move C to the second position (B, C, H, W) | |
| # Resize image2 to match the target size while preserving aspect ratio | |
| image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled") | |
| # Adjust image2 back to the original format (B, H, W, C) after resizing | |
| image2_resized = image2_resized.movedim(1, -1) | |
| else: | |
| image2_resized = image2 | |
| # Ensure both images have the same number of channels | |
| channels_image1 = image1.shape[-1] | |
| channels_image2 = image2_resized.shape[-1] | |
| if channels_image1 != channels_image2: | |
| if channels_image1 < channels_image2: | |
| # Add alpha channel to image1 if image2 has it | |
| alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device) | |
| image1 = torch.cat((image1, alpha_channel), dim=-1) | |
| else: | |
| # Add alpha channel to image2 if image1 has it | |
| alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device) | |
| image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1) | |
| # Concatenate based on the specified direction | |
| if direction == 'right': | |
| concatenated_image = torch.cat((image1, image2_resized), dim=2) # Concatenate along width | |
| elif direction == 'down': | |
| concatenated_image = torch.cat((image1, image2_resized), dim=1) # Concatenate along height | |
| elif direction == 'left': | |
| concatenated_image = torch.cat((image2_resized, image1), dim=2) # Concatenate along width | |
| elif direction == 'up': | |
| concatenated_image = torch.cat((image2_resized, image1), dim=1) # Concatenate along height | |
| return concatenated_image, | |
| import torch # Make sure you have PyTorch installed | |
| class ImageConcatFromBatch: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "images": ("IMAGE",), | |
| "num_columns": ("INT", {"default": 3, "min": 1, "max": 255, "step": 1}), | |
| "match_image_size": ("BOOLEAN", {"default": False}), | |
| "max_resolution": ("INT", {"default": 4096}), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "concat" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Concatenates images from a batch into a grid with a specified number of columns. | |
| """ | |
| def concat(self, images, num_columns, match_image_size, max_resolution): | |
| # Assuming images is a batch of images (B, H, W, C) | |
| batch_size, height, width, channels = images.shape | |
| num_rows = (batch_size + num_columns - 1) // num_columns # Calculate number of rows | |
| print(f"Initial dimensions: batch_size={batch_size}, height={height}, width={width}, channels={channels}") | |
| print(f"num_rows={num_rows}, num_columns={num_columns}") | |
| if match_image_size: | |
| target_shape = images[0].shape | |
| resized_images = [] | |
| for image in images: | |
| original_height = image.shape[0] | |
| original_width = image.shape[1] | |
| original_aspect_ratio = original_width / original_height | |
| if original_aspect_ratio > 1: | |
| target_height = target_shape[0] | |
| target_width = int(target_height * original_aspect_ratio) | |
| else: | |
| target_width = target_shape[1] | |
| target_height = int(target_width / original_aspect_ratio) | |
| print(f"Resizing image from ({original_height}, {original_width}) to ({target_height}, {target_width})") | |
| # Resize the image to match the target size while preserving aspect ratio | |
| resized_image = common_upscale(image.movedim(-1, 0), target_width, target_height, "lanczos", "disabled") | |
| resized_image = resized_image.movedim(0, -1) # Move channels back to the last dimension | |
| resized_images.append(resized_image) | |
| # Convert the list of resized images back to a tensor | |
| images = torch.stack(resized_images) | |
| height, width = target_shape[:2] # Update height and width | |
| # Initialize an empty grid | |
| grid_height = num_rows * height | |
| grid_width = num_columns * width | |
| print(f"Grid dimensions before scaling: grid_height={grid_height}, grid_width={grid_width}") | |
| # Original scale factor calculation remains unchanged | |
| scale_factor = min(max_resolution / grid_height, max_resolution / grid_width, 1.0) | |
| # Apply scale factor to height and width | |
| scaled_height = height * scale_factor | |
| scaled_width = width * scale_factor | |
| # Round scaled dimensions to the nearest number divisible by 8 | |
| height = max(1, int(round(scaled_height / 8) * 8)) | |
| width = max(1, int(round(scaled_width / 8) * 8)) | |
| if abs(scaled_height - height) > 4: | |
| height = max(1, int(round((scaled_height + 4) / 8) * 8)) | |
| if abs(scaled_width - width) > 4: | |
| width = max(1, int(round((scaled_width + 4) / 8) * 8)) | |
| # Recalculate grid dimensions with adjusted height and width | |
| grid_height = num_rows * height | |
| grid_width = num_columns * width | |
| print(f"Grid dimensions after scaling: grid_height={grid_height}, grid_width={grid_width}") | |
| print(f"Final image dimensions: height={height}, width={width}") | |
| grid = torch.zeros((grid_height, grid_width, channels), dtype=images.dtype) | |
| for idx, image in enumerate(images): | |
| resized_image = torch.nn.functional.interpolate(image.unsqueeze(0).permute(0, 3, 1, 2), size=(height, width), mode="bilinear").squeeze().permute(1, 2, 0) | |
| row = idx // num_columns | |
| col = idx % num_columns | |
| grid[row*height:(row+1)*height, col*width:(col+1)*width, :] = resized_image | |
| return grid.unsqueeze(0), | |
| class ImageGridComposite2x2: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image1": ("IMAGE",), | |
| "image2": ("IMAGE",), | |
| "image3": ("IMAGE",), | |
| "image4": ("IMAGE",), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "compositegrid" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Concatenates the 4 input images into a 2x2 grid. | |
| """ | |
| def compositegrid(self, image1, image2, image3, image4): | |
| top_row = torch.cat((image1, image2), dim=2) | |
| bottom_row = torch.cat((image3, image4), dim=2) | |
| grid = torch.cat((top_row, bottom_row), dim=1) | |
| return (grid,) | |
| class ImageGridComposite3x3: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image1": ("IMAGE",), | |
| "image2": ("IMAGE",), | |
| "image3": ("IMAGE",), | |
| "image4": ("IMAGE",), | |
| "image5": ("IMAGE",), | |
| "image6": ("IMAGE",), | |
| "image7": ("IMAGE",), | |
| "image8": ("IMAGE",), | |
| "image9": ("IMAGE",), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "compositegrid" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Concatenates the 9 input images into a 3x3 grid. | |
| """ | |
| def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9): | |
| top_row = torch.cat((image1, image2, image3), dim=2) | |
| mid_row = torch.cat((image4, image5, image6), dim=2) | |
| bottom_row = torch.cat((image7, image8, image9), dim=2) | |
| grid = torch.cat((top_row, mid_row, bottom_row), dim=1) | |
| return (grid,) | |
| class ImageBatchTestPattern: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), | |
| "start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), | |
| "text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), | |
| "text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), | |
| "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
| "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
| "font": (folder_paths.get_filename_list("kjnodes_fonts"), ), | |
| "font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "generatetestpattern" | |
| CATEGORY = "KJNodes/text" | |
| def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y): | |
| out = [] | |
| # Generate the sequential numbers for each image | |
| numbers = np.arange(start_from, start_from + batch_size) | |
| font_path = folder_paths.get_full_path("kjnodes_fonts", font) | |
| for number in numbers: | |
| # Create a black image with the number as a random color text | |
| image = Image.new("RGB", (width, height), color='black') | |
| draw = ImageDraw.Draw(image) | |
| # Generate a random color for the text | |
| font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) | |
| font = ImageFont.truetype(font_path, font_size) | |
| # Get the size of the text and position it in the center | |
| text = str(number) | |
| try: | |
| draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga']) | |
| except: | |
| draw.text((text_x, text_y), text, font=font, fill=font_color,) | |
| # Convert the image to a numpy array and normalize the pixel values | |
| image_np = np.array(image).astype(np.float32) / 255.0 | |
| image_tensor = torch.from_numpy(image_np).unsqueeze(0) | |
| out.append(image_tensor) | |
| out_tensor = torch.cat(out, dim=0) | |
| return (out_tensor,) | |
| class ImageGrabPIL: | |
| def IS_CHANGED(cls): | |
| return | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "screencap" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = """ | |
| Captures an area specified by screen coordinates. | |
| Can be used for realtime diffusion with autoqueue. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), | |
| "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), | |
| "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), | |
| "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), | |
| "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), | |
| "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), | |
| }, | |
| } | |
| def screencap(self, x, y, width, height, num_frames, delay): | |
| start_time = time.time() | |
| captures = [] | |
| bbox = (x, y, x + width, y + height) | |
| for _ in range(num_frames): | |
| # Capture screen | |
| screen_capture = ImageGrab.grab(bbox=bbox) | |
| screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0) | |
| captures.append(screen_capture_torch) | |
| # Wait for a short delay if more than one frame is to be captured | |
| if num_frames > 1: | |
| time.sleep(delay) | |
| elapsed_time = time.time() - start_time | |
| print(f"screengrab took {elapsed_time} seconds.") | |
| return (torch.cat(captures, dim=0),) | |
| class Screencap_mss: | |
| def IS_CHANGED(s, **kwargs): | |
| return float("NaN") | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "screencap" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = """ | |
| Captures an area specified by screen coordinates. | |
| Can be used for realtime diffusion with autoqueue. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "x": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), | |
| "y": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), | |
| "width": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), | |
| "height": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), | |
| "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), | |
| "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), | |
| }, | |
| } | |
| def screencap(self, x, y, width, height, num_frames, delay): | |
| from mss import mss | |
| captures = [] | |
| with mss() as sct: | |
| bbox = {'top': y, 'left': x, 'width': width, 'height': height} | |
| for _ in range(num_frames): | |
| sct_img = sct.grab(bbox) | |
| img_np = np.array(sct_img) | |
| img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0 | |
| captures.append(img_torch) | |
| if num_frames > 1: | |
| time.sleep(delay) | |
| return (torch.stack(captures, 0),) | |
| class WebcamCaptureCV2: | |
| def IS_CHANGED(cls): | |
| return | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "capture" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = """ | |
| Captures a frame from a webcam using CV2. | |
| Can be used for realtime diffusion with autoqueue. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), | |
| "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), | |
| "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), | |
| "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), | |
| "cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), | |
| "release": ("BOOLEAN", {"default": False}), | |
| }, | |
| } | |
| def capture(self, x, y, cam_index, width, height, release): | |
| # Check if the camera index has changed or the capture object doesn't exist | |
| if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index: | |
| if hasattr(self, "cap") and self.cap is not None: | |
| self.cap.release() | |
| self.current_cam_index = cam_index | |
| self.cap = cv2.VideoCapture(cam_index) | |
| try: | |
| self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) | |
| self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) | |
| except: | |
| pass | |
| if not self.cap.isOpened(): | |
| raise Exception("Could not open webcam") | |
| ret, frame = self.cap.read() | |
| if not ret: | |
| raise Exception("Failed to capture image from webcam") | |
| # Crop the frame to the specified bbox | |
| frame = frame[y:y+height, x:x+width] | |
| img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0 | |
| if release: | |
| self.cap.release() | |
| self.cap = None | |
| return (img_torch.unsqueeze(0),) | |
| class AddLabel: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image":("IMAGE",), | |
| "text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}), | |
| "text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}), | |
| "height": ("INT", {"default": 48, "min": -1, "max": 4096, "step": 1}), | |
| "font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}), | |
| "font_color": ("STRING", {"default": "white"}), | |
| "label_color": ("STRING", {"default": "black"}), | |
| "font": (folder_paths.get_filename_list("kjnodes_fonts"), ), | |
| "text": ("STRING", {"default": "Text"}), | |
| "direction": ( | |
| [ 'up', | |
| 'down', | |
| 'left', | |
| 'right', | |
| 'overlay' | |
| ], | |
| { | |
| "default": 'up' | |
| }), | |
| }, | |
| "optional":{ | |
| "caption": ("STRING", {"default": "", "forceInput": True}), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "addlabel" | |
| CATEGORY = "KJNodes/text" | |
| DESCRIPTION = """ | |
| Creates a new with the given text, and concatenates it to | |
| either above or below the input image. | |
| Note that this changes the input image's height! | |
| Fonts are loaded from this folder: | |
| ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts | |
| """ | |
| def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""): | |
| batch_size = image.shape[0] | |
| width = image.shape[2] | |
| font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font) | |
| def process_image(input_image, caption_text): | |
| font = ImageFont.truetype(font_path, font_size) | |
| words = caption_text.split() | |
| lines = [] | |
| current_line = [] | |
| current_line_width = 0 | |
| for word in words: | |
| word_width = font.getbbox(word)[2] | |
| if current_line_width + word_width <= width - 2 * text_x: | |
| current_line.append(word) | |
| current_line_width += word_width + font.getbbox(" ")[2] # Add space width | |
| else: | |
| lines.append(" ".join(current_line)) | |
| current_line = [word] | |
| current_line_width = word_width | |
| if current_line: | |
| lines.append(" ".join(current_line)) | |
| if direction == 'overlay': | |
| pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8)) | |
| else: | |
| if height == -1: | |
| # Adjust the image height automatically | |
| margin = 8 | |
| required_height = (text_y + len(lines) * font_size) + margin # Calculate required height | |
| pil_image = Image.new("RGB", (width, required_height), label_color) | |
| else: | |
| # Initialize with a minimal height | |
| label_image = Image.new("RGB", (width, height), label_color) | |
| pil_image = label_image | |
| draw = ImageDraw.Draw(pil_image) | |
| y_offset = text_y | |
| for line in lines: | |
| try: | |
| draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga']) | |
| except: | |
| draw.text((text_x, y_offset), line, font=font, fill=font_color) | |
| y_offset += font_size | |
| processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0) | |
| return processed_image | |
| if caption == "": | |
| processed_images = [process_image(img, text) for img in image] | |
| else: | |
| assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images" | |
| processed_images = [process_image(img, cap) for img, cap in zip(image, caption)] | |
| processed_batch = torch.cat(processed_images, dim=0) | |
| # Combine images based on direction | |
| if direction == 'down': | |
| combined_images = torch.cat((image, processed_batch), dim=1) | |
| elif direction == 'up': | |
| combined_images = torch.cat((processed_batch, image), dim=1) | |
| elif direction == 'left': | |
| processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) | |
| combined_images = torch.cat((processed_batch, image), dim=2) | |
| elif direction == 'right': | |
| processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) | |
| combined_images = torch.cat((image, processed_batch), dim=2) | |
| else: | |
| combined_images = processed_batch | |
| return (combined_images,) | |
| class GetImageSizeAndCount: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE",), | |
| }} | |
| RETURN_TYPES = ("IMAGE","INT", "INT", "INT",) | |
| RETURN_NAMES = ("image", "width", "height", "count",) | |
| FUNCTION = "getsize" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Returns width, height and batch size of the image, | |
| and passes it through unchanged. | |
| """ | |
| def getsize(self, image): | |
| width = image.shape[2] | |
| height = image.shape[1] | |
| count = image.shape[0] | |
| return {"ui": { | |
| "text": [f"{count}x{width}x{height}"]}, | |
| "result": (image, width, height, count) | |
| } | |
| class ImageBatchRepeatInterleaving: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "repeat" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Repeats each image in a batch by the specified number of times. | |
| Example batch of 5 images: 0, 1 ,2, 3, 4 | |
| with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "repeats": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
| }, | |
| } | |
| def repeat(self, images, repeats): | |
| repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0) | |
| return (repeated_images, ) | |
| class ImageUpscaleWithModelBatched: | |
| def INPUT_TYPES(s): | |
| return {"required": { "upscale_model": ("UPSCALE_MODEL",), | |
| "images": ("IMAGE",), | |
| "per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "upscale" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Same as ComfyUI native model upscaling node, | |
| but allows setting sub-batches for reduced VRAM usage. | |
| """ | |
| def upscale(self, upscale_model, images, per_batch): | |
| device = model_management.get_torch_device() | |
| upscale_model.to(device) | |
| in_img = images.movedim(-1,-3) | |
| steps = in_img.shape[0] | |
| pbar = ProgressBar(steps) | |
| t = [] | |
| for start_idx in range(0, in_img.shape[0], per_batch): | |
| sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device)) | |
| t.append(sub_images.cpu()) | |
| # Calculate the number of images processed in this batch | |
| batch_count = sub_images.shape[0] | |
| # Update the progress bar by the number of images processed in this batch | |
| pbar.update(batch_count) | |
| upscale_model.cpu() | |
| t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu() | |
| return (t,) | |
| class ImageNormalize_Neg1_To_1: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "images": ("IMAGE",), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "normalize" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Normalize the images to be in the range [-1, 1] | |
| """ | |
| def normalize(self,images): | |
| images = images * 2.0 - 1.0 | |
| return (images,) | |
| class RemapImageRange: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE",), | |
| "min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}), | |
| "max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}), | |
| "clamp": ("BOOLEAN", {"default": True}), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "remap" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Remaps the image values to the specified range. | |
| """ | |
| def remap(self, image, min, max, clamp): | |
| if image.dtype == torch.float16: | |
| image = image.to(torch.float32) | |
| image = min + image * (max - min) | |
| if clamp: | |
| image = torch.clamp(image, min=0.0, max=1.0) | |
| return (image, ) | |
| class SplitImageChannels: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE",), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK") | |
| RETURN_NAMES = ("red", "green", "blue", "mask") | |
| FUNCTION = "split" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Splits image channels into images where the selected channel | |
| is repeated for all channels, and the alpha as a mask. | |
| """ | |
| def split(self, image): | |
| red = image[:, :, :, 0:1] # Red channel | |
| green = image[:, :, :, 1:2] # Green channel | |
| blue = image[:, :, :, 2:3] # Blue channel | |
| alpha = image[:, :, :, 3:4] # Alpha channel | |
| alpha = alpha.squeeze(-1) | |
| # Repeat the selected channel for all channels | |
| red = torch.cat([red, red, red], dim=3) | |
| green = torch.cat([green, green, green], dim=3) | |
| blue = torch.cat([blue, blue, blue], dim=3) | |
| return (red, green, blue, alpha) | |
| class MergeImageChannels: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "red": ("IMAGE",), | |
| "green": ("IMAGE",), | |
| "blue": ("IMAGE",), | |
| }, | |
| "optional": { | |
| "alpha": ("MASK", {"default": None}), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "merge" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Merges channel data into an image. | |
| """ | |
| def merge(self, red, green, blue, alpha=None): | |
| image = torch.stack([ | |
| red[..., 0, None], # Red channel | |
| green[..., 1, None], # Green channel | |
| blue[..., 2, None] # Blue channel | |
| ], dim=-1) | |
| image = image.squeeze(-2) | |
| if alpha is not None: | |
| image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1) | |
| return (image,) | |
| class ImagePadForOutpaintMasked: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| }, | |
| "optional": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK") | |
| FUNCTION = "expand_image" | |
| CATEGORY = "image" | |
| def expand_image(self, image, left, top, right, bottom, feathering, mask=None): | |
| if mask is not None: | |
| if torch.allclose(mask, torch.zeros_like(mask)): | |
| print("Warning: The incoming mask is fully black. Handling it as None.") | |
| mask = None | |
| B, H, W, C = image.size() | |
| new_image = torch.ones( | |
| (B, H + top + bottom, W + left + right, C), | |
| dtype=torch.float32, | |
| ) * 0.5 | |
| new_image[:, top:top + H, left:left + W, :] = image | |
| if mask is None: | |
| new_mask = torch.ones( | |
| (B, H + top + bottom, W + left + right), | |
| dtype=torch.float32, | |
| ) | |
| t = torch.zeros( | |
| (B, H, W), | |
| dtype=torch.float32 | |
| ) | |
| else: | |
| # If a mask is provided, pad it to fit the new image size | |
| mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0) | |
| mask = 1 - mask | |
| t = torch.zeros_like(mask) | |
| if feathering > 0 and feathering * 2 < H and feathering * 2 < W: | |
| for i in range(H): | |
| for j in range(W): | |
| dt = i if top != 0 else H | |
| db = H - i if bottom != 0 else H | |
| dl = j if left != 0 else W | |
| dr = W - j if right != 0 else W | |
| d = min(dt, db, dl, dr) | |
| if d >= feathering: | |
| continue | |
| v = (feathering - d) / feathering | |
| if mask is None: | |
| t[:, i, j] = v * v | |
| else: | |
| t[:, top + i, left + j] = v * v | |
| if mask is None: | |
| new_mask[:, top:top + H, left:left + W] = t | |
| return (new_image, new_mask,) | |
| else: | |
| return (new_image, mask,) | |
| class ImagePadForOutpaintTargetSize: | |
| upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "upscale_method": (s.upscale_methods,), | |
| }, | |
| "optional": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK") | |
| FUNCTION = "expand_image" | |
| CATEGORY = "image" | |
| def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None): | |
| B, H, W, C = image.size() | |
| new_height = H | |
| new_width = W | |
| # Calculate the scaling factor while maintaining aspect ratio | |
| scaling_factor = min(target_width / W, target_height / H) | |
| # Check if the image needs to be downscaled | |
| if scaling_factor < 1: | |
| image = image.movedim(-1,1) | |
| # Calculate the new width and height after downscaling | |
| new_width = int(W * scaling_factor) | |
| new_height = int(H * scaling_factor) | |
| # Downscale the image | |
| image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1) | |
| if mask is not None: | |
| mask_scaled = mask.unsqueeze(0) # Add an extra dimension for batch size | |
| mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest") | |
| mask_scaled = mask_scaled.squeeze(0) # Remove the extra dimension after interpolation | |
| else: | |
| mask_scaled = mask | |
| else: | |
| # If downscaling is not needed, use the original image dimensions | |
| image_scaled = image | |
| mask_scaled = mask | |
| # Calculate how much padding is needed to reach the target dimensions | |
| pad_top = max(0, (target_height - new_height) // 2) | |
| pad_bottom = max(0, target_height - new_height - pad_top) | |
| pad_left = max(0, (target_width - new_width) // 2) | |
| pad_right = max(0, target_width - new_width - pad_left) | |
| # Now call the original expand_image with the calculated padding | |
| return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled) | |
| class ImageAndMaskPreview(SaveImage): | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_temp_directory() | |
| self.type = "temp" | |
| self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
| self.compress_level = 4 | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| "mask_color": ("STRING", {"default": "255, 255, 255"}), | |
| "pass_through": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "image": ("IMAGE",), | |
| "mask": ("MASK",), | |
| }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("composite",) | |
| FUNCTION = "execute" | |
| CATEGORY = "KJNodes" | |
| DESCRIPTION = """ | |
| Preview an image or a mask, when both inputs are used | |
| composites the mask on top of the image. | |
| with pass_through on the preview is disabled and the | |
| composite is returned from the composite slot instead, | |
| this allows for the preview to be passed for video combine | |
| nodes for example. | |
| """ | |
| def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None): | |
| if mask is not None and image is None: | |
| preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
| elif mask is None and image is not None: | |
| preview = image | |
| elif mask is not None and image is not None: | |
| mask_adjusted = mask * mask_opacity | |
| mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone() | |
| if ',' in mask_color: | |
| color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) # RGB format | |
| else: | |
| mask_color = mask_color.lstrip('#') | |
| color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] # Hex format | |
| mask_image[:, :, :, 0] = color_list[0] / 255 # Red channel | |
| mask_image[:, :, :, 1] = color_list[1] / 255 # Green channel | |
| mask_image[:, :, :, 2] = color_list[2] / 255 # Blue channel | |
| preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted) | |
| if pass_through: | |
| return (preview, ) | |
| return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo)) | |
| class CrossFadeImages: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "crossfadeimages" | |
| CATEGORY = "KJNodes/image" | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images_1": ("IMAGE",), | |
| "images_2": ("IMAGE",), | |
| "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), | |
| "transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| "start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}), | |
| "end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}), | |
| }, | |
| } | |
| def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level): | |
| def crossfade(images_1, images_2, alpha): | |
| crossfade = (1 - alpha) * images_1 + alpha * images_2 | |
| return crossfade | |
| def ease_in(t): | |
| return t * t | |
| def ease_out(t): | |
| return 1 - (1 - t) * (1 - t) | |
| def ease_in_out(t): | |
| return 3 * t * t - 2 * t * t * t | |
| def bounce(t): | |
| if t < 0.5: | |
| return self.ease_out(t * 2) * 0.5 | |
| else: | |
| return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5 | |
| def elastic(t): | |
| return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1)) | |
| def glitchy(t): | |
| return t + 0.1 * math.sin(40 * t) | |
| def exponential_ease_out(t): | |
| return 1 - (1 - t) ** 4 | |
| easing_functions = { | |
| "linear": lambda t: t, | |
| "ease_in": ease_in, | |
| "ease_out": ease_out, | |
| "ease_in_out": ease_in_out, | |
| "bounce": bounce, | |
| "elastic": elastic, | |
| "glitchy": glitchy, | |
| "exponential_ease_out": exponential_ease_out, | |
| } | |
| crossfade_images = [] | |
| alphas = torch.linspace(start_level, end_level, transitioning_frames) | |
| for i in range(transitioning_frames): | |
| alpha = alphas[i] | |
| image1 = images_1[i + transition_start_index] | |
| image2 = images_2[i + transition_start_index] | |
| easing_function = easing_functions.get(interpolation) | |
| alpha = easing_function(alpha) # Apply the easing function to the alpha value | |
| crossfade_image = crossfade(image1, image2, alpha) | |
| crossfade_images.append(crossfade_image) | |
| # Convert crossfade_images to tensor | |
| crossfade_images = torch.stack(crossfade_images, dim=0) | |
| # Get the last frame result of the interpolation | |
| last_frame = crossfade_images[-1] | |
| # Calculate the number of remaining frames from images_2 | |
| remaining_frames = len(images_2) - (transition_start_index + transitioning_frames) | |
| # Crossfade the remaining frames with the last used alpha value | |
| for i in range(remaining_frames): | |
| alpha = alphas[-1] | |
| image1 = images_1[i + transition_start_index + transitioning_frames] | |
| image2 = images_2[i + transition_start_index + transitioning_frames] | |
| easing_function = easing_functions.get(interpolation) | |
| alpha = easing_function(alpha) # Apply the easing function to the alpha value | |
| crossfade_image = crossfade(image1, image2, alpha) | |
| crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0) | |
| # Append the beginning of images_1 | |
| beginning_images_1 = images_1[:transition_start_index] | |
| crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0) | |
| return (crossfade_images, ) | |
| class CrossFadeImagesMulti: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "crossfadeimages" | |
| CATEGORY = "KJNodes/image" | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
| "image_1": ("IMAGE",), | |
| "image_2": ("IMAGE",), | |
| "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), | |
| "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| }, | |
| } | |
| def crossfadeimages(self, inputcount, transitioning_frames, interpolation, **kwargs): | |
| def crossfade(images_1, images_2, alpha): | |
| crossfade = (1 - alpha) * images_1 + alpha * images_2 | |
| return crossfade | |
| def ease_in(t): | |
| return t * t | |
| def ease_out(t): | |
| return 1 - (1 - t) * (1 - t) | |
| def ease_in_out(t): | |
| return 3 * t * t - 2 * t * t * t | |
| def bounce(t): | |
| if t < 0.5: | |
| return self.ease_out(t * 2) * 0.5 | |
| else: | |
| return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5 | |
| def elastic(t): | |
| return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1)) | |
| def glitchy(t): | |
| return t + 0.1 * math.sin(40 * t) | |
| def exponential_ease_out(t): | |
| return 1 - (1 - t) ** 4 | |
| easing_functions = { | |
| "linear": lambda t: t, | |
| "ease_in": ease_in, | |
| "ease_out": ease_out, | |
| "ease_in_out": ease_in_out, | |
| "bounce": bounce, | |
| "elastic": elastic, | |
| "glitchy": glitchy, | |
| "exponential_ease_out": exponential_ease_out, | |
| } | |
| image_1 = kwargs["image_1"] | |
| height = image_1.shape[1] | |
| width = image_1.shape[2] | |
| easing_function = easing_functions[interpolation] | |
| for c in range(1, inputcount): | |
| frames = [] | |
| new_image = kwargs[f"image_{c + 1}"] | |
| new_image_height = new_image.shape[1] | |
| new_image_width = new_image.shape[2] | |
| if new_image_height != height or new_image_width != width: | |
| new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") | |
| new_image = new_image.movedim(1, -1) # Move channels back to the last dimension | |
| last_frame_image_1 = image_1[-1] | |
| first_frame_image_2 = new_image[0] | |
| for frame in range(transitioning_frames): | |
| t = frame / (transitioning_frames - 1) | |
| alpha = easing_function(t) | |
| alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) | |
| frame_image = crossfade(last_frame_image_1, first_frame_image_2, alpha_tensor) | |
| frames.append(frame_image) | |
| frames = torch.stack(frames) | |
| image_1 = torch.cat((image_1, frames, new_image), dim=0) | |
| return image_1, | |
| def transition_images(images_1, images_2, alpha, transition_type, blur_radius, reverse): | |
| width = images_1.shape[1] | |
| height = images_1.shape[0] | |
| mask = torch.zeros_like(images_1, device=images_1.device) | |
| alpha = alpha.item() | |
| if reverse: | |
| alpha = 1 - alpha | |
| #transitions from matteo's essential nodes | |
| if "horizontal slide" in transition_type: | |
| pos = round(width * alpha) | |
| mask[:, :pos, :] = 1.0 | |
| elif "vertical slide" in transition_type: | |
| pos = round(height * alpha) | |
| mask[:pos, :, :] = 1.0 | |
| elif "box" in transition_type: | |
| box_w = round(width * alpha) | |
| box_h = round(height * alpha) | |
| x1 = (width - box_w) // 2 | |
| y1 = (height - box_h) // 2 | |
| x2 = x1 + box_w | |
| y2 = y1 + box_h | |
| mask[y1:y2, x1:x2, :] = 1.0 | |
| elif "circle" in transition_type: | |
| radius = math.ceil(math.sqrt(pow(width, 2) + pow(height, 2)) * alpha / 2) | |
| c_x = width // 2 | |
| c_y = height // 2 | |
| x = torch.arange(0, width, dtype=torch.float32, device="cpu") | |
| y = torch.arange(0, height, dtype=torch.float32, device="cpu") | |
| y, x = torch.meshgrid((y, x), indexing="ij") | |
| circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2) | |
| mask[circle] = 1.0 | |
| elif "horizontal door" in transition_type: | |
| bar = math.ceil(height * alpha / 2) | |
| if bar > 0: | |
| mask[:bar, :, :] = 1.0 | |
| mask[-bar:,:, :] = 1.0 | |
| elif "vertical door" in transition_type: | |
| bar = math.ceil(width * alpha / 2) | |
| if bar > 0: | |
| mask[:, :bar,:] = 1.0 | |
| mask[:, -bar:,:] = 1.0 | |
| elif "fade" in transition_type: | |
| mask[:, :, :] = alpha | |
| mask = gaussian_blur(mask, blur_radius) | |
| return images_1 * (1 - mask) + images_2 * mask | |
| def ease_in(t): | |
| return t * t | |
| def ease_out(t): | |
| return 1 - (1 - t) * (1 - t) | |
| def ease_in_out(t): | |
| return 3 * t * t - 2 * t * t * t | |
| def bounce(t): | |
| if t < 0.5: | |
| return ease_out(t * 2) * 0.5 | |
| else: | |
| return ease_in((t - 0.5) * 2) * 0.5 + 0.5 | |
| def elastic(t): | |
| return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1)) | |
| def glitchy(t): | |
| return t + 0.1 * math.sin(40 * t) | |
| def exponential_ease_out(t): | |
| return 1 - (1 - t) ** 4 | |
| def gaussian_blur(mask, blur_radius): | |
| if blur_radius > 0: | |
| kernel_size = int(blur_radius * 2) + 1 | |
| if kernel_size % 2 == 0: | |
| kernel_size += 1 # Ensure kernel size is odd | |
| sigma = blur_radius / 3 | |
| x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32) | |
| x = torch.exp(-0.5 * (x / sigma) ** 2) | |
| kernel1d = x / x.sum() | |
| kernel2d = kernel1d[:, None] * kernel1d[None, :] | |
| kernel2d = kernel2d.to(mask.device) | |
| kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1]) | |
| mask = mask.permute(2, 0, 1).unsqueeze(0) # Change to [C, H, W] and add batch dimension | |
| mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1]) | |
| mask = mask.squeeze(0).permute(1, 2, 0) # Change back to [H, W, C] | |
| return mask | |
| easing_functions = { | |
| "linear": lambda t: t, | |
| "ease_in": ease_in, | |
| "ease_out": ease_out, | |
| "ease_in_out": ease_in_out, | |
| "bounce": bounce, | |
| "elastic": elastic, | |
| "glitchy": glitchy, | |
| "exponential_ease_out": exponential_ease_out, | |
| } | |
| class TransitionImagesMulti: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "transition" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Creates transitions between images. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
| "image_1": ("IMAGE",), | |
| "image_2": ("IMAGE",), | |
| "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), | |
| "transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), | |
| "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| "blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), | |
| "reverse": ("BOOLEAN", {"default": False}), | |
| "device": (["CPU", "GPU"], {"default": "CPU"}), | |
| }, | |
| } | |
| def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse, **kwargs): | |
| gpu = model_management.get_torch_device() | |
| image_1 = kwargs["image_1"] | |
| height = image_1.shape[1] | |
| width = image_1.shape[2] | |
| easing_function = easing_functions[interpolation] | |
| for c in range(1, inputcount): | |
| frames = [] | |
| new_image = kwargs[f"image_{c + 1}"] | |
| new_image_height = new_image.shape[1] | |
| new_image_width = new_image.shape[2] | |
| if new_image_height != height or new_image_width != width: | |
| new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") | |
| new_image = new_image.movedim(1, -1) # Move channels back to the last dimension | |
| last_frame_image_1 = image_1[-1] | |
| first_frame_image_2 = new_image[0] | |
| if device == "GPU": | |
| last_frame_image_1 = last_frame_image_1.to(gpu) | |
| first_frame_image_2 = first_frame_image_2.to(gpu) | |
| if reverse: | |
| last_frame_image_1, first_frame_image_2 = first_frame_image_2, last_frame_image_1 | |
| for frame in range(transitioning_frames): | |
| t = frame / (transitioning_frames - 1) | |
| alpha = easing_function(t) | |
| alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) | |
| frame_image = transition_images(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius, reverse) | |
| frames.append(frame_image) | |
| frames = torch.stack(frames).cpu() | |
| image_1 = torch.cat((image_1, frames, new_image), dim=0) | |
| return image_1.cpu(), | |
| class TransitionImagesInBatch: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "transition" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Creates transitions between images in a batch. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), | |
| "transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), | |
| "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| "blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), | |
| "reverse": ("BOOLEAN", {"default": False}), | |
| "device": (["CPU", "GPU"], {"default": "CPU"}), | |
| }, | |
| } | |
| #transitions from matteo's essential nodes | |
| def transition(self, images, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse): | |
| if images.shape[0] == 1: | |
| return images, | |
| gpu = model_management.get_torch_device() | |
| easing_function = easing_functions[interpolation] | |
| images_list = [] | |
| pbar = ProgressBar(images.shape[0] - 1) | |
| for i in range(images.shape[0] - 1): | |
| frames = [] | |
| image_1 = images[i] | |
| image_2 = images[i + 1] | |
| if device == "GPU": | |
| image_1 = image_1.to(gpu) | |
| image_2 = image_2.to(gpu) | |
| if reverse: | |
| image_1, image_2 = image_2, image_1 | |
| for frame in range(transitioning_frames): | |
| t = frame / (transitioning_frames - 1) | |
| alpha = easing_function(t) | |
| alpha_tensor = torch.tensor(alpha, dtype=image_1.dtype, device=image_1.device) | |
| frame_image = transition_images(image_1, image_2, alpha_tensor, transition_type, blur_radius, reverse) | |
| frames.append(frame_image) | |
| pbar.update(1) | |
| frames = torch.stack(frames).cpu() | |
| images_list.append(frames) | |
| images = torch.cat(images_list, dim=0) | |
| return images.cpu(), | |
| class ShuffleImageBatch: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "shuffle" | |
| CATEGORY = "KJNodes/image" | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), | |
| }, | |
| } | |
| def shuffle(self, images, seed): | |
| torch.manual_seed(seed) | |
| B, H, W, C = images.shape | |
| indices = torch.randperm(B) | |
| shuffled_images = images[indices] | |
| return shuffled_images, | |
| class GetImageRangeFromBatch: | |
| RETURN_TYPES = ("IMAGE", "MASK", ) | |
| FUNCTION = "imagesfrombatch" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Randomizes image order within a batch. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), | |
| "num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}), | |
| }, | |
| "optional": { | |
| "images": ("IMAGE",), | |
| "masks": ("MASK",), | |
| } | |
| } | |
| def imagesfrombatch(self, start_index, num_frames, images=None, masks=None): | |
| chosen_images = None | |
| chosen_masks = None | |
| # Process images if provided | |
| if images is not None: | |
| if start_index == -1: | |
| start_index = len(images) - num_frames | |
| if start_index < 0 or start_index >= len(images): | |
| raise ValueError("Start index is out of range") | |
| end_index = start_index + num_frames | |
| if end_index > len(images): | |
| raise ValueError("End index is out of range") | |
| chosen_images = images[start_index:end_index] | |
| # Process masks if provided | |
| if masks is not None: | |
| if start_index == -1: | |
| start_index = len(masks) - num_frames | |
| if start_index < 0 or start_index >= len(masks): | |
| raise ValueError("Start index is out of range for masks") | |
| end_index = start_index + num_frames | |
| if end_index > len(masks): | |
| raise ValueError("End index is out of range for masks") | |
| chosen_masks = masks[start_index:end_index] | |
| return (chosen_images, chosen_masks,) | |
| class GetImagesFromBatchIndexed: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "indexedimagesfrombatch" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Selects and returns the images at the specified indices as an image batch. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), | |
| }, | |
| } | |
| def indexedimagesfrombatch(self, images, indexes): | |
| # Parse the indexes string into a list of integers | |
| index_list = [int(index.strip()) for index in indexes.split(',')] | |
| # Convert list of indices to a PyTorch tensor | |
| indices_tensor = torch.tensor(index_list, dtype=torch.long) | |
| # Select the images at the specified indices | |
| chosen_images = images[indices_tensor] | |
| return (chosen_images,) | |
| class InsertImagesToBatchIndexed: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "insertimagesfrombatch" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Inserts images at the specified indices into the original image batch. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "original_images": ("IMAGE",), | |
| "images_to_insert": ("IMAGE",), | |
| "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), | |
| }, | |
| } | |
| def insertimagesfrombatch(self, original_images, images_to_insert, indexes): | |
| # Parse the indexes string into a list of integers | |
| index_list = [int(index.strip()) for index in indexes.split(',')] | |
| # Convert list of indices to a PyTorch tensor | |
| indices_tensor = torch.tensor(index_list, dtype=torch.long) | |
| # Ensure the images_to_insert is a tensor | |
| if not isinstance(images_to_insert, torch.Tensor): | |
| images_to_insert = torch.tensor(images_to_insert) | |
| # Insert the images at the specified indices | |
| for index, image in zip(indices_tensor, images_to_insert): | |
| original_images[index] = image | |
| return (original_images,) | |
| class ReplaceImagesInBatch: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "replace" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Replaces the images in a batch, starting from the specified start index, | |
| with the replacement images. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "original_images": ("IMAGE",), | |
| "replacement_images": ("IMAGE",), | |
| "start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), | |
| }, | |
| } | |
| def replace(self, original_images, replacement_images, start_index): | |
| images = None | |
| if start_index >= len(original_images): | |
| raise ValueError("GetImageRangeFromBatch: Start index is out of range") | |
| end_index = start_index + len(replacement_images) | |
| if end_index > len(original_images): | |
| raise ValueError("GetImageRangeFromBatch: End index is out of range") | |
| # Create a copy of the original_images tensor | |
| original_images_copy = original_images.clone() | |
| original_images_copy[start_index:end_index] = replacement_images | |
| images = original_images_copy | |
| return (images, ) | |
| class ReverseImageBatch: | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "reverseimagebatch" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Reverses the order of the images in a batch. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| }, | |
| } | |
| def reverseimagebatch(self, images): | |
| reversed_images = torch.flip(images, [0]) | |
| return (reversed_images, ) | |
| class ImageBatchMulti: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
| "image_1": ("IMAGE", ), | |
| "image_2": ("IMAGE", ), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("images",) | |
| FUNCTION = "combine" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Creates an image batch from multiple images. | |
| You can set how many inputs the node has, | |
| with the **inputcount** and clicking update. | |
| """ | |
| def combine(self, inputcount, **kwargs): | |
| from nodes import ImageBatch | |
| image_batch_node = ImageBatch() | |
| image = kwargs["image_1"] | |
| for c in range(1, inputcount): | |
| new_image = kwargs[f"image_{c + 1}"] | |
| image, = image_batch_node.batch(image, new_image) | |
| return (image,) | |
| class ImageAddMulti: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
| "image_1": ("IMAGE", ), | |
| "image_2": ("IMAGE", ), | |
| "blending": ( | |
| [ 'add', | |
| 'subtract', | |
| 'multiply', | |
| 'difference', | |
| ], | |
| { | |
| "default": 'add' | |
| }), | |
| "blend_amount": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("images",) | |
| FUNCTION = "add" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Add blends multiple images together. | |
| You can set how many inputs the node has, | |
| with the **inputcount** and clicking update. | |
| """ | |
| def add(self, inputcount, blending, blend_amount, **kwargs): | |
| image = kwargs["image_1"] | |
| for c in range(1, inputcount): | |
| new_image = kwargs[f"image_{c + 1}"] | |
| if blending == "add": | |
| image = torch.add(image * blend_amount, new_image * blend_amount) | |
| elif blending == "subtract": | |
| image = torch.sub(image * blend_amount, new_image * blend_amount) | |
| elif blending == "multiply": | |
| image = torch.mul(image * blend_amount, new_image * blend_amount) | |
| elif blending == "difference": | |
| image = torch.sub(image, new_image) | |
| return (image,) | |
| class ImageConcatMulti: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
| "image_1": ("IMAGE", ), | |
| "image_2": ("IMAGE", ), | |
| "direction": ( | |
| [ 'right', | |
| 'down', | |
| 'left', | |
| 'up', | |
| ], | |
| { | |
| "default": 'right' | |
| }), | |
| "match_image_size": ("BOOLEAN", {"default": False}), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("images",) | |
| FUNCTION = "combine" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Creates an image from multiple images. | |
| You can set how many inputs the node has, | |
| with the **inputcount** and clicking update. | |
| """ | |
| def combine(self, inputcount, direction, match_image_size, **kwargs): | |
| image = kwargs["image_1"] | |
| first_image_shape = None | |
| if first_image_shape is None: | |
| first_image_shape = image.shape | |
| for c in range(1, inputcount): | |
| new_image = kwargs[f"image_{c + 1}"] | |
| image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape) | |
| first_image_shape = None | |
| return (image,) | |
| class PreviewAnimation: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_temp_directory() | |
| self.type = "temp" | |
| self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
| self.compress_level = 1 | |
| methods = {"default": 4, "fastest": 0, "slowest": 6} | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| { | |
| "fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}), | |
| }, | |
| "optional": { | |
| "images": ("IMAGE", ), | |
| "masks": ("MASK", ), | |
| }, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "preview" | |
| OUTPUT_NODE = True | |
| CATEGORY = "KJNodes/image" | |
| def preview(self, fps, images=None, masks=None): | |
| filename_prefix = "AnimPreview" | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
| results = list() | |
| pil_images = [] | |
| if images is not None and masks is not None: | |
| for image in images: | |
| i = 255. * image.cpu().numpy() | |
| img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
| pil_images.append(img) | |
| for mask in masks: | |
| if pil_images: | |
| mask_np = mask.cpu().numpy() | |
| mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8) # Convert to values between 0 and 255 | |
| mask_img = Image.fromarray(mask_np, mode='L') | |
| img = pil_images.pop(0) # Remove and get the first image | |
| img = img.convert("RGBA") # Convert base image to RGBA | |
| # Create a new RGBA image based on the grayscale mask | |
| rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255)) | |
| rgba_mask_img.putalpha(mask_img) # Use the mask image as the alpha channel | |
| # Composite the RGBA mask onto the base image | |
| composited_img = Image.alpha_composite(img, rgba_mask_img) | |
| pil_images.append(composited_img) # Add the composited image back | |
| elif images is not None and masks is None: | |
| for image in images: | |
| i = 255. * image.cpu().numpy() | |
| img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
| pil_images.append(img) | |
| elif masks is not None and images is None: | |
| for mask in masks: | |
| mask_np = 255. * mask.cpu().numpy() | |
| mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8)) | |
| pil_images.append(mask_img) | |
| else: | |
| print("PreviewAnimation: No images or masks provided") | |
| return { "ui": { "images": results, "animated": (None,), "text": "empty" }} | |
| num_frames = len(pil_images) | |
| c = len(pil_images) | |
| for i in range(0, c, num_frames): | |
| file = f"{filename}_{counter:05}_.webp" | |
| pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=80, method=4) | |
| results.append({ | |
| "filename": file, | |
| "subfolder": subfolder, | |
| "type": self.type | |
| }) | |
| counter += 1 | |
| animated = num_frames != 1 | |
| return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } } | |
| class ImageResizeKJ: | |
| upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "upscale_method": (s.upscale_methods,), | |
| "keep_proportion": ("BOOLEAN", { "default": False }), | |
| "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), | |
| }, | |
| "optional" : { | |
| "width_input": ("INT", { "forceInput": True}), | |
| "height_input": ("INT", { "forceInput": True}), | |
| "get_image_size": ("IMAGE",), | |
| "crop": (["disabled","center"],), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "INT", "INT",) | |
| RETURN_NAMES = ("IMAGE", "width", "height",) | |
| FUNCTION = "resize" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = """ | |
| Resizes the image to the specified width and height. | |
| Size can be retrieved from the inputs, and the final scale | |
| is determined in this order of importance: | |
| - get_image_size | |
| - width_input and height_input | |
| - width and height widgets | |
| Keep proportions keeps the aspect ratio of the image, by | |
| highest dimension. | |
| """ | |
| def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, | |
| width_input=None, height_input=None, get_image_size=None, crop="disabled"): | |
| B, H, W, C = image.shape | |
| if width_input: | |
| width = width_input | |
| if height_input: | |
| height = height_input | |
| if get_image_size is not None: | |
| _, height, width, _ = get_image_size.shape | |
| if keep_proportion and get_image_size is None: | |
| # If one of the dimensions is zero, calculate it to maintain the aspect ratio | |
| if width == 0 and height != 0: | |
| ratio = height / H | |
| width = round(W * ratio) | |
| elif height == 0 and width != 0: | |
| ratio = width / W | |
| height = round(H * ratio) | |
| elif width != 0 and height != 0: | |
| # Scale based on which dimension is smaller in proportion to the desired dimensions | |
| ratio = min(width / W, height / H) | |
| width = round(W * ratio) | |
| height = round(H * ratio) | |
| else: | |
| if width == 0: | |
| width = W | |
| if height == 0: | |
| height = H | |
| if divisible_by > 1 and get_image_size is None: | |
| width = width - (width % divisible_by) | |
| height = height - (height % divisible_by) | |
| image = image.movedim(-1,1) | |
| image = common_upscale(image, width, height, upscale_method, crop) | |
| image = image.movedim(1,-1) | |
| return(image, image.shape[2], image.shape[1],) | |
| import pathlib | |
| class LoadAndResizeImage: | |
| _color_channels = ["alpha", "red", "green", "blue"] | |
| def INPUT_TYPES(s): | |
| input_dir = folder_paths.get_input_directory() | |
| files = [f.name for f in pathlib.Path(input_dir).iterdir() if f.is_file()] | |
| return {"required": | |
| { | |
| "image": (sorted(files), {"image_upload": True}), | |
| "resize": ("BOOLEAN", { "default": False }), | |
| "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }), | |
| "keep_proportion": ("BOOLEAN", { "default": False }), | |
| "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), | |
| "mask_channel": (s._color_channels, {"tooltip": "Channel to use for the mask output"}), | |
| "background_color": ("STRING", { "default": "", "tooltip": "Fills the alpha channel with the specified color."}), | |
| }, | |
| } | |
| CATEGORY = "KJNodes/image" | |
| RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT", "STRING",) | |
| RETURN_NAMES = ("image", "mask", "width", "height","image_path",) | |
| FUNCTION = "load_image" | |
| def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel, background_color): | |
| from PIL import ImageColor, Image, ImageOps, ImageSequence | |
| import numpy as np | |
| import torch | |
| image_path = folder_paths.get_annotated_filepath(image) | |
| import node_helpers | |
| img = node_helpers.pillow(Image.open, image_path) | |
| # Process the background_color | |
| if background_color: | |
| try: | |
| # Try to parse as RGB tuple | |
| bg_color_rgba = tuple(int(x.strip()) for x in background_color.split(',')) | |
| except ValueError: | |
| # If parsing fails, it might be a hex color or named color | |
| if background_color.startswith('#') or background_color.lower() in ImageColor.colormap: | |
| bg_color_rgba = ImageColor.getrgb(background_color) | |
| else: | |
| raise ValueError(f"Invalid background color: {background_color}") | |
| bg_color_rgba += (255,) # Add alpha channel | |
| else: | |
| bg_color_rgba = None # No background color specified | |
| output_images = [] | |
| output_masks = [] | |
| w, h = None, None | |
| excluded_formats = ['MPO'] | |
| W, H = img.size | |
| if resize: | |
| if keep_proportion: | |
| ratio = min(width / W, height / H) | |
| width = round(W * ratio) | |
| height = round(H * ratio) | |
| else: | |
| if width == 0: | |
| width = W | |
| if height == 0: | |
| height = H | |
| if divisible_by > 1: | |
| width = width - (width % divisible_by) | |
| height = height - (height % divisible_by) | |
| else: | |
| width, height = W, H | |
| for frame in ImageSequence.Iterator(img): | |
| frame = node_helpers.pillow(ImageOps.exif_transpose, frame) | |
| if frame.mode == 'I': | |
| frame = frame.point(lambda i: i * (1 / 255)) | |
| if frame.mode == 'P': | |
| frame = frame.convert("RGBA") | |
| elif 'A' in frame.getbands(): | |
| frame = frame.convert("RGBA") | |
| # Extract alpha channel if it exists | |
| if 'A' in frame.getbands() and bg_color_rgba: | |
| alpha_mask = np.array(frame.getchannel('A')).astype(np.float32) / 255.0 | |
| alpha_mask = 1. - torch.from_numpy(alpha_mask) | |
| bg_image = Image.new("RGBA", frame.size, bg_color_rgba) | |
| # Composite the frame onto the background | |
| frame = Image.alpha_composite(bg_image, frame) | |
| else: | |
| alpha_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
| image = frame.convert("RGB") | |
| if len(output_images) == 0: | |
| w = image.size[0] | |
| h = image.size[1] | |
| if image.size[0] != w or image.size[1] != h: | |
| continue | |
| if resize: | |
| image = image.resize((width, height), Image.Resampling.BILINEAR) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = torch.from_numpy(image)[None,] | |
| c = mask_channel[0].upper() | |
| if c in frame.getbands(): | |
| if resize: | |
| frame = frame.resize((width, height), Image.Resampling.BILINEAR) | |
| mask = np.array(frame.getchannel(c)).astype(np.float32) / 255.0 | |
| mask = torch.from_numpy(mask) | |
| if c == 'A' and bg_color_rgba: | |
| mask = alpha_mask | |
| elif c == 'A': | |
| mask = 1. - mask | |
| else: | |
| mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
| output_images.append(image) | |
| output_masks.append(mask.unsqueeze(0)) | |
| if len(output_images) > 1 and img.format not in excluded_formats: | |
| output_image = torch.cat(output_images, dim=0) | |
| output_mask = torch.cat(output_masks, dim=0) | |
| else: | |
| output_image = output_images[0] | |
| output_mask = output_masks[0] | |
| if repeat > 1: | |
| output_image = output_image.repeat(repeat, 1, 1, 1) | |
| output_mask = output_mask.repeat(repeat, 1, 1) | |
| return (output_image, output_mask, width, height, image_path) | |
| # @classmethod | |
| # def IS_CHANGED(s, image, **kwargs): | |
| # image_path = folder_paths.get_annotated_filepath(image) | |
| # m = hashlib.sha256() | |
| # with open(image_path, 'rb') as f: | |
| # m.update(f.read()) | |
| # return m.digest().hex() | |
| def VALIDATE_INPUTS(s, image): | |
| if not folder_paths.exists_annotated_filepath(image): | |
| return "Invalid image file: {}".format(image) | |
| return True | |
| class LoadImagesFromFolderKJ: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "folder": ("STRING", {"default": ""}), | |
| }, | |
| "optional": { | |
| "image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}), | |
| "start_index": ("INT", {"default": 0, "min": 0, "step": 1}), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK", "INT", "STRING",) | |
| RETURN_NAMES = ("image", "mask", "count", "image_path",) | |
| FUNCTION = "load_images" | |
| CATEGORY = "image" | |
| def load_images(self, folder, image_load_cap, start_index): | |
| if not os.path.isdir(folder): | |
| raise FileNotFoundError(f"Folder '{folder} cannot be found.'") | |
| dir_files = os.listdir(folder) | |
| if len(dir_files) == 0: | |
| raise FileNotFoundError(f"No files in directory '{folder}'.") | |
| # Filter files by extension | |
| valid_extensions = ['.jpg', '.jpeg', '.png', '.webp'] | |
| dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)] | |
| dir_files = sorted(dir_files) | |
| dir_files = [os.path.join(folder, x) for x in dir_files] | |
| # start at start_index | |
| dir_files = dir_files[start_index:] | |
| images = [] | |
| masks = [] | |
| image_path_list = [] | |
| limit_images = False | |
| if image_load_cap > 0: | |
| limit_images = True | |
| image_count = 0 | |
| has_non_empty_mask = False | |
| for image_path in dir_files: | |
| if os.path.isdir(image_path) and os.path.ex: | |
| continue | |
| if limit_images and image_count >= image_load_cap: | |
| break | |
| i = Image.open(image_path) | |
| i = ImageOps.exif_transpose(i) | |
| image = i.convert("RGB") | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = torch.from_numpy(image)[None,] | |
| if 'A' in i.getbands(): | |
| mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 | |
| mask = 1. - torch.from_numpy(mask) | |
| has_non_empty_mask = True | |
| else: | |
| mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
| images.append(image) | |
| masks.append(mask) | |
| image_path_list.append(image_path) | |
| image_count += 1 | |
| if len(images) == 1: | |
| return (images[0], masks[0], 1, image_path_list) | |
| elif len(images) > 1: | |
| image1 = images[0] | |
| mask1 = None | |
| for image2 in images[1:]: | |
| if image1.shape[1:] != image2.shape[1:]: | |
| image2 = common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1) | |
| image1 = torch.cat((image1, image2), dim=0) | |
| for mask2 in masks[1:]: | |
| if has_non_empty_mask: | |
| if image1.shape[1:3] != mask2.shape: | |
| mask2 = torch.nn.functional.interpolate(mask2.unsqueeze(0).unsqueeze(0), size=(image1.shape[2], image1.shape[1]), mode='bilinear', align_corners=False) | |
| mask2 = mask2.squeeze(0) | |
| else: | |
| mask2 = mask2.unsqueeze(0) | |
| else: | |
| mask2 = mask2.unsqueeze(0) | |
| if mask1 is None: | |
| mask1 = mask2 | |
| else: | |
| mask1 = torch.cat((mask1, mask2), dim=0) | |
| return (image1, mask1, len(images), image_path_list) | |
| class ImageGridtoBatch: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE", ), | |
| "columns": ("INT", {"default": 3, "min": 1, "max": 8, "tooltip": "The number of columns in the grid."}), | |
| "rows": ("INT", {"default": 0, "min": 1, "max": 8, "tooltip": "The number of rows in the grid. Set to 0 for automatic calculation."}), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "decompose" | |
| CATEGORY = "KJNodes/image" | |
| DESCRIPTION = "Converts a grid of images to a batch of images." | |
| def decompose(self, image, columns, rows): | |
| B, H, W, C = image.shape | |
| print("input size: ", image.shape) | |
| # Calculate cell width, rounding down | |
| cell_width = W // columns | |
| if rows == 0: | |
| # If rows is 0, calculate number of full rows | |
| rows = H // cell_height | |
| else: | |
| # If rows is specified, adjust cell_height | |
| cell_height = H // rows | |
| # Crop the image to fit full cells | |
| image = image[:, :rows*cell_height, :columns*cell_width, :] | |
| # Reshape and permute the image to get the grid | |
| image = image.view(B, rows, cell_height, columns, cell_width, C) | |
| image = image.permute(0, 1, 3, 2, 4, 5).contiguous() | |
| image = image.view(B, rows * columns, cell_height, cell_width, C) | |
| # Reshape to the final batch tensor | |
| img_tensor = image.view(-1, cell_height, cell_width, C) | |
| return (img_tensor,) | |
| class SaveImageKJ: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| self.compress_level = 4 | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE", {"tooltip": "The images to save."}), | |
| "filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}), | |
| "output_folder": ("STRING", {"default": "output", "tooltip": "The folder to save the images to."}), | |
| }, | |
| "optional": { | |
| "caption_file_extension": ("STRING", {"default": ".txt", "tooltip": "The extension for the caption file."}), | |
| "caption": ("STRING", {"forceInput": True, "tooltip": "string to save as .txt file"}), | |
| }, | |
| "hidden": { | |
| "prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO" | |
| }, | |
| } | |
| RETURN_TYPES = ("STRING",) | |
| RETURN_NAMES = ("filename",) | |
| FUNCTION = "save_images" | |
| OUTPUT_NODE = True | |
| CATEGORY = "image" | |
| DESCRIPTION = "Saves the input images to your ComfyUI output directory." | |
| def save_images(self, images, output_folder, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None, caption=None, caption_file_extension=".txt"): | |
| filename_prefix += self.prefix_append | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) | |
| if output_folder != "output": | |
| if not os.path.exists(output_folder): | |
| os.makedirs(output_folder, exist_ok=True) | |
| full_output_folder = output_folder | |
| results = list() | |
| for (batch_number, image) in enumerate(images): | |
| i = 255. * image.cpu().numpy() | |
| img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
| metadata = None | |
| if not args.disable_metadata: | |
| metadata = PngInfo() | |
| if prompt is not None: | |
| metadata.add_text("prompt", json.dumps(prompt)) | |
| if extra_pnginfo is not None: | |
| for x in extra_pnginfo: | |
| metadata.add_text(x, json.dumps(extra_pnginfo[x])) | |
| filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
| base_file_name = f"{filename_with_batch_num}_{counter:05}_" | |
| file = f"{base_file_name}.png" | |
| img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level) | |
| results.append({ | |
| "filename": file, | |
| "subfolder": subfolder, | |
| "type": self.type | |
| }) | |
| if caption is not None: | |
| txt_file = base_file_name + caption_file_extension | |
| file_path = os.path.join(full_output_folder, txt_file) | |
| with open(file_path, 'w') as f: | |
| f.write(caption) | |
| counter += 1 | |
| return { "ui": { | |
| "images": results }, | |
| "result": (file,) } | |
| to_pil_image = T.ToPILImage() | |
| class FastPreview: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "image": ("IMAGE", ), | |
| "format": (["JPEG", "PNG", "WEBP"], {"default": "JPEG"}), | |
| "quality" : ("INT", {"default": 75, "min": 1, "max": 100, "step": 1}), | |
| }, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "preview" | |
| CATEGORY = "KJNodes/experimental" | |
| OUTPUT_NODE = True | |
| def preview(self, image, format, quality): | |
| pil_image = to_pil_image(image[0].permute(2, 0, 1)) | |
| with io.BytesIO() as buffered: | |
| pil_image.save(buffered, format=format, quality=quality) | |
| img_bytes = buffered.getvalue() | |
| img_base64 = base64.b64encode(img_bytes).decode('utf-8') | |
| return { | |
| "ui": {"bg_image": [img_base64]}, | |
| "result": () | |
| } | |
| class ImageCropByMaskAndResize: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE", ), | |
| "mask": ("MASK", ), | |
| "base_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "padding": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), | |
| "min_crop_resolution": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| "max_crop_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
| }, | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK", "BBOX", ) | |
| RETURN_NAMES = ("images", "masks", "bbox",) | |
| FUNCTION = "crop" | |
| CATEGORY = "KJNodes/image" | |
| def crop_by_mask(self, mask, padding=0, min_crop_resolution=None, max_crop_resolution=None): | |
| iy, ix = (mask == 1).nonzero(as_tuple=True) | |
| h0, w0 = mask.shape | |
| if iy.numel() == 0: | |
| x_c = w0 / 2.0 | |
| y_c = h0 / 2.0 | |
| width = 0 | |
| height = 0 | |
| else: | |
| x_min = ix.min().item() | |
| x_max = ix.max().item() | |
| y_min = iy.min().item() | |
| y_max = iy.max().item() | |
| width = x_max - x_min | |
| height = y_max - y_min | |
| if width > w0 or height > h0: | |
| raise Exception("Masked area out of bounds") | |
| x_c = (x_min + x_max) / 2.0 | |
| y_c = (y_min + y_max) / 2.0 | |
| if min_crop_resolution: | |
| width = max(width, min_crop_resolution) | |
| height = max(height, min_crop_resolution) | |
| if max_crop_resolution: | |
| width = min(width, max_crop_resolution) | |
| height = min(height, max_crop_resolution) | |
| if w0 <= width: | |
| x0 = 0 | |
| w = w0 | |
| else: | |
| x0 = max(0, x_c - width / 2 - padding) | |
| w = width + 2 * padding | |
| if x0 + w > w0: | |
| x0 = w0 - w | |
| if h0 <= height: | |
| y0 = 0 | |
| h = h0 | |
| else: | |
| y0 = max(0, y_c - height / 2 - padding) | |
| h = height + 2 * padding | |
| if y0 + h > h0: | |
| y0 = h0 - h | |
| return (int(x0), int(y0), int(w), int(h)) | |
| def crop(self, image, mask, base_resolution, padding=0, min_crop_resolution=128, max_crop_resolution=512): | |
| mask = mask.round() | |
| image_list = [] | |
| mask_list = [] | |
| bbox_list = [] | |
| # First, collect all bounding boxes | |
| bbox_params = [] | |
| aspect_ratios = [] | |
| for i in range(image.shape[0]): | |
| x0, y0, w, h = self.crop_by_mask(mask[i], padding, min_crop_resolution, max_crop_resolution) | |
| bbox_params.append((x0, y0, w, h)) | |
| aspect_ratios.append(w / h) | |
| # Find maximum width and height | |
| max_w = max([w for x0, y0, w, h in bbox_params]) | |
| max_h = max([h for x0, y0, w, h in bbox_params]) | |
| max_aspect_ratio = max(aspect_ratios) | |
| # Ensure dimensions are divisible by 16 | |
| max_w = (max_w + 15) // 16 * 16 | |
| max_h = (max_h + 15) // 16 * 16 | |
| # Calculate common target dimensions | |
| if max_aspect_ratio > 1: | |
| target_width = base_resolution | |
| target_height = int(base_resolution / max_aspect_ratio) | |
| else: | |
| target_height = base_resolution | |
| target_width = int(base_resolution * max_aspect_ratio) | |
| for i in range(image.shape[0]): | |
| x0, y0, w, h = bbox_params[i] | |
| # Adjust cropping to use maximum width and height | |
| x_center = x0 + w / 2 | |
| y_center = y0 + h / 2 | |
| x0_new = int(max(0, x_center - max_w / 2)) | |
| y0_new = int(max(0, y_center - max_h / 2)) | |
| x1_new = int(min(x0_new + max_w, image.shape[2])) | |
| y1_new = int(min(y0_new + max_h, image.shape[1])) | |
| x0_new = x1_new - max_w | |
| y0_new = y1_new - max_h | |
| cropped_image = image[i][y0_new:y1_new, x0_new:x1_new, :] | |
| cropped_mask = mask[i][y0_new:y1_new, x0_new:x1_new] | |
| # Ensure dimensions are divisible by 16 | |
| target_width = (target_width + 15) // 16 * 16 | |
| target_height = (target_height + 15) // 16 * 16 | |
| cropped_image = cropped_image.unsqueeze(0).movedim(-1, 1) # Move C to the second position (B, C, H, W) | |
| cropped_image = common_upscale(cropped_image, target_width, target_height, "lanczos", "disabled") | |
| cropped_image = cropped_image.movedim(1, -1).squeeze(0) | |
| cropped_mask = cropped_mask.unsqueeze(0).unsqueeze(0) | |
| cropped_mask = common_upscale(cropped_mask, target_width, target_height, 'bilinear', "disabled") | |
| cropped_mask = cropped_mask.squeeze(0).squeeze(0) | |
| image_list.append(cropped_image) | |
| mask_list.append(cropped_mask) | |
| bbox_list.append((x0_new, y0_new, x1_new, y1_new)) | |
| return (torch.stack(image_list), torch.stack(mask_list), bbox_list) | |
| class ImageUncropByMask: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| { | |
| "destination": ("IMAGE",), | |
| "source": ("IMAGE",), | |
| "mask": ("MASK",), | |
| "bbox": ("BBOX",), | |
| }, | |
| } | |
| CATEGORY = "KJNodes/image" | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = "uncrop" | |
| def uncrop(self, destination, source, mask, bbox=None): | |
| output_list = [] | |
| B, H, W, C = destination.shape | |
| for i in range(source.shape[0]): | |
| x0, y0, x1, y1 = bbox[i] | |
| bbox_height = y1 - y0 | |
| bbox_width = x1 - x0 | |
| # Resize source image to match the bounding box dimensions | |
| #resized_source = F.interpolate(source[i].unsqueeze(0).movedim(-1, 1), size=(bbox_height, bbox_width), mode='bilinear', align_corners=False) | |
| resized_source = common_upscale(source[i].unsqueeze(0).movedim(-1, 1), bbox_width, bbox_height, "lanczos", "disabled") | |
| resized_source = resized_source.movedim(1, -1).squeeze(0) | |
| # Resize mask to match the bounding box dimensions | |
| resized_mask = common_upscale(mask[i].unsqueeze(0).unsqueeze(0), bbox_width, bbox_height, "bilinear", "disabled") | |
| resized_mask = resized_mask.squeeze(0).squeeze(0) | |
| # Calculate padding values | |
| pad_left = x0 | |
| pad_right = W - x1 | |
| pad_top = y0 | |
| pad_bottom = H - y1 | |
| # Pad the resized source image and mask to fit the destination dimensions | |
| padded_source = F.pad(resized_source, pad=(0, 0, pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) | |
| padded_mask = F.pad(resized_mask, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) | |
| # Ensure the padded mask has the correct shape | |
| padded_mask = padded_mask.unsqueeze(2).expand(-1, -1, destination[i].shape[2]) | |
| # Ensure the padded source has the correct shape | |
| padded_source = padded_source.unsqueeze(2).expand(-1, -1, -1, destination[i].shape[2]).squeeze(2) | |
| # Combine the destination and padded source images using the mask | |
| result = destination[i] * (1.0 - padded_mask) + padded_source * padded_mask | |
| output_list.append(result) | |
| return (torch.stack(output_list),) |