Spaces:
Sleeping
Sleeping
# code adapted from https://github.com/exx8/differential-diffusion | |
import torch | |
class DifferentialDiffusion(): | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL", ), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply" | |
CATEGORY = "_for_testing" | |
INIT = False | |
def apply(self, model): | |
model = model.clone() | |
model.set_model_denoise_mask_function(self.forward) | |
return (model,) | |
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict): | |
model = extra_options["model"] | |
step_sigmas = extra_options["sigmas"] | |
sigma_to = model.inner_model.model_sampling.sigma_min | |
if step_sigmas[-1] > sigma_to: | |
sigma_to = step_sigmas[-1] | |
sigma_from = step_sigmas[0] | |
ts_from = model.inner_model.model_sampling.timestep(sigma_from) | |
ts_to = model.inner_model.model_sampling.timestep(sigma_to) | |
current_ts = model.inner_model.model_sampling.timestep(sigma[0]) | |
threshold = (current_ts - ts_to) / (ts_from - ts_to) | |
return (denoise_mask >= threshold).to(denoise_mask.dtype) | |
NODE_CLASS_MAPPINGS = { | |
"DifferentialDiffusion": DifferentialDiffusion, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"DifferentialDiffusion": "Differential Diffusion", | |
} | |