Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import sys | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| # Import all the necessary functions from the original script | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| # Add all the necessary setup functions from the original script | |
| def find_path(name: str, path: str = None) -> str: | |
| if path is None: | |
| path = os.getcwd() | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| parent_directory = os.path.dirname(path) | |
| if parent_directory == path: | |
| return None | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| # Initialize paths | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def import_custom_nodes() -> None: | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| init_extra_nodes() | |
| # Import all necessary nodes | |
| from nodes import ( | |
| StyleModelLoader, | |
| VAEEncode, | |
| NODE_CLASS_MAPPINGS, | |
| LoadImage, | |
| CLIPVisionLoader, | |
| SaveImage, | |
| VAELoader, | |
| CLIPVisionEncode, | |
| DualCLIPLoader, | |
| EmptyLatentImage, | |
| VAEDecode, | |
| UNETLoader, | |
| CLIPTextEncode, | |
| ) | |
| # Initialize all constant nodes and models in global context | |
| import_custom_nodes() | |
| # Global variables for preloaded models and constants | |
| with torch.inference_mode(): | |
| # Initialize constants | |
| intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
| CONST_1024 = intconstant.get_value(value=1024) | |
| # Load CLIP | |
| dualcliploader = DualCLIPLoader() | |
| CLIP_MODEL = dualcliploader.load_clip( | |
| clip_name1="t5/t5xxl_fp16.safetensors", | |
| clip_name2="clip_l.safetensors", | |
| type="flux", | |
| ) | |
| # Load VAE | |
| vaeloader = VAELoader() | |
| VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
| # Load UNET | |
| unetloader = UNETLoader() | |
| UNET_MODEL = unetloader.load_unet( | |
| unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
| ) | |
| # Load CLIP Vision | |
| clipvisionloader = CLIPVisionLoader() | |
| CLIP_VISION_MODEL = clipvisionloader.load_clip( | |
| clip_name="sigclip_vision_patch14_384.safetensors" | |
| ) | |
| # Load Style Model | |
| stylemodelloader = StyleModelLoader() | |
| STYLE_MODEL = stylemodelloader.load_style_model( | |
| style_model_name="flux1-redux-dev.safetensors" | |
| ) | |
| # Initialize samplers | |
| ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| SAMPLER = ksamplerselect.get_sampler(sampler_name="euler") | |
| # Initialize depth model | |
| downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]() | |
| DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel( | |
| model="depth_anything_v2_vitl_fp32.safetensors" | |
| ) | |
| def generate_image(prompt: str, structure_image: str, style_image: str, style_strength: float) -> str: | |
| """Main generation function that processes inputs and returns the path to the generated image.""" | |
| with torch.inference_mode(): | |
| # Set up CLIP | |
| cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
| clip_switch = cr_clip_input_switch.switch( | |
| Input=1, | |
| clip1=get_value_at_index(CLIP_MODEL, 0), | |
| clip2=get_value_at_index(CLIP_MODEL, 0), | |
| ) | |
| # Encode text | |
| cliptextencode = CLIPTextEncode() | |
| text_encoded = cliptextencode.encode( | |
| text=prompt, | |
| clip=get_value_at_index(clip_switch, 0), | |
| ) | |
| empty_text = cliptextencode.encode( | |
| text="", | |
| clip=get_value_at_index(clip_switch, 0), | |
| ) | |
| # Process structure image | |
| loadimage = LoadImage() | |
| structure_img = loadimage.load_image(image=structure_image) | |
| # Resize image | |
| imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
| resized_img = imageresize.execute( | |
| width=get_value_at_index(CONST_1024, 0), | |
| height=get_value_at_index(CONST_1024, 0), | |
| interpolation="bicubic", | |
| method="keep proportion", | |
| condition="always", | |
| multiple_of=16, | |
| image=get_value_at_index(structure_img, 0), | |
| ) | |
| # Get image size | |
| getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
| size_info = getimagesizeandcount.getsize( | |
| image=get_value_at_index(resized_img, 0) | |
| ) | |
| # Encode VAE | |
| vaeencode = VAEEncode() | |
| vae_encoded = vaeencode.encode( | |
| pixels=get_value_at_index(size_info, 0), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| ) | |
| # Process depth | |
| depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
| depth_processed = depthanything_v2.process( | |
| da_model=get_value_at_index(DEPTH_MODEL, 0), | |
| images=get_value_at_index(size_info, 0), | |
| ) | |
| # Apply Flux guidance | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| flux_guided = fluxguidance.append( | |
| guidance=15, | |
| conditioning=get_value_at_index(text_encoded, 0), | |
| ) | |
| # Process style image | |
| style_img = loadimage.load_image(image=style_image) | |
| # Encode style with CLIP Vision | |
| clipvisionencode = CLIPVisionEncode() | |
| style_encoded = clipvisionencode.encode( | |
| crop="center", | |
| clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0), | |
| image=get_value_at_index(style_img, 0), | |
| ) | |
| # Set up conditioning | |
| instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]() | |
| conditioning = instructpixtopixconditioning.encode( | |
| positive=get_value_at_index(flux_guided, 0), | |
| negative=get_value_at_index(empty_text, 0), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| pixels=get_value_at_index(depth_processed, 0), | |
| ) | |
| # Apply style | |
| stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
| style_applied = stylemodelapplyadvanced.apply_stylemodel( | |
| strength=style_strength, | |
| conditioning=get_value_at_index(conditioning, 0), | |
| style_model=get_value_at_index(STYLE_MODEL, 0), | |
| clip_vision_output=get_value_at_index(style_encoded, 0), | |
| ) | |
| # Set up empty latent | |
| emptylatentimage = EmptyLatentImage() | |
| empty_latent = emptylatentimage.generate( | |
| width=get_value_at_index(resized_img, 1), | |
| height=get_value_at_index(resized_img, 2), | |
| batch_size=1, | |
| ) | |
| # Set up guidance | |
| basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| guided = basicguider.get_guider( | |
| model=get_value_at_index(UNET_MODEL, 0), | |
| conditioning=get_value_at_index(style_applied, 0), | |
| ) | |
| # Set up scheduler | |
| basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| schedule = basicscheduler.get_sigmas( | |
| scheduler="simple", | |
| steps=28, | |
| denoise=1, | |
| model=get_value_at_index(UNET_MODEL, 0), | |
| ) | |
| # Generate random noise | |
| randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
| # Sample | |
| samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| sampled = samplercustomadvanced.sample( | |
| noise=get_value_at_index(noise, 0), | |
| guider=get_value_at_index(guided, 0), | |
| sampler=get_value_at_index(SAMPLER, 0), | |
| sigmas=get_value_at_index(schedule, 0), | |
| latent_image=get_value_at_index(empty_latent, 0), | |
| ) | |
| # Decode VAE | |
| vaedecode = VAEDecode() | |
| decoded = vaedecode.decode( | |
| samples=get_value_at_index(sampled, 0), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| ) | |
| # Save image | |
| cr_text = NODE_CLASS_MAPPINGS["CR Text"]() | |
| prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux") | |
| saveimage = SaveImage() | |
| saved = saveimage.save_images( | |
| filename_prefix=get_value_at_index(prefix, 0), | |
| images=get_value_at_index(decoded, 0), | |
| ) | |
| return get_value_at_index(saved, 0) | |
| # Create Gradio interface | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Image Generation with Style Transfer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
| structure_image = gr.Image(label="Structure Image", type="filepath") | |
| style_image = gr.Image(label="Style Image", type="filepath") | |
| style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength") | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt_input, structure_image, style_image, style_strength], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() |