Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import sys | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| Raises: | |
| IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directory | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| print( | |
| "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
| ) | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| init_extra_nodes() | |
| from nodes import ( | |
| StyleModelLoader, | |
| VAEEncode, | |
| NODE_CLASS_MAPPINGS, | |
| LoadImage, | |
| CLIPVisionLoader, | |
| SaveImage, | |
| VAELoader, | |
| CLIPVisionEncode, | |
| DualCLIPLoader, | |
| EmptyLatentImage, | |
| VAEDecode, | |
| UNETLoader, | |
| CLIPTextEncode, | |
| ) | |
| def main(): | |
| import_custom_nodes() | |
| with torch.inference_mode(): | |
| intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
| intconstant_83 = intconstant.get_value(value=1024) | |
| intconstant_84 = intconstant.get_value(value=1024) | |
| dualcliploader = DualCLIPLoader() | |
| dualcliploader_357 = dualcliploader.load_clip( | |
| clip_name1="t5/t5xxl_fp16.safetensors", | |
| clip_name2="clip_l.safetensors", | |
| type="flux", | |
| ) | |
| cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
| cr_clip_input_switch_319 = cr_clip_input_switch.switch( | |
| Input=1, | |
| clip1=get_value_at_index(dualcliploader_357, 0), | |
| clip2=get_value_at_index(dualcliploader_357, 0), | |
| ) | |
| cliptextencode = CLIPTextEncode() | |
| cliptextencode_174 = cliptextencode.encode( | |
| text="a girl looking at a house on fire", | |
| clip=get_value_at_index(cr_clip_input_switch_319, 0), | |
| ) | |
| cliptextencode_175 = cliptextencode.encode( | |
| text="", clip=get_value_at_index(cr_clip_input_switch_319, 0) | |
| ) | |
| loadimage = LoadImage() | |
| loadimage_429 = loadimage.load_image( | |
| image="7038548d-d204-4810-bb74-d1dea277200a.png" | |
| ) | |
| imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
| imageresize_72 = imageresize.execute( | |
| width=get_value_at_index(intconstant_83, 0), | |
| height=get_value_at_index(intconstant_84, 0), | |
| interpolation="bicubic", | |
| method="keep proportion", | |
| condition="always", | |
| multiple_of=16, | |
| image=get_value_at_index(loadimage_429, 0), | |
| ) | |
| getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
| getimagesizeandcount_360 = getimagesizeandcount.getsize( | |
| image=get_value_at_index(imageresize_72, 0) | |
| ) | |
| vaeloader = VAELoader() | |
| vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
| vaeencode = VAEEncode() | |
| vaeencode_197 = vaeencode.encode( | |
| pixels=get_value_at_index(getimagesizeandcount_360, 0), | |
| vae=get_value_at_index(vaeloader_359, 0), | |
| ) | |
| unetloader = UNETLoader() | |
| unetloader_358 = unetloader.load_unet( | |
| unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
| ) | |
| ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler") | |
| randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| fluxguidance_430 = fluxguidance.append( | |
| guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0) | |
| ) | |
| downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[ | |
| "DownloadAndLoadDepthAnythingV2Model" | |
| ]() | |
| downloadandloaddepthanythingv2model_437 = ( | |
| downloadandloaddepthanythingv2model.loadmodel( | |
| model="depth_anything_v2_vitl_fp32.safetensors" | |
| ) | |
| ) | |
| depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
| depthanything_v2_436 = depthanything_v2.process( | |
| da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0), | |
| images=get_value_at_index(getimagesizeandcount_360, 0), | |
| ) | |
| instructpixtopixconditioning = NODE_CLASS_MAPPINGS[ | |
| "InstructPixToPixConditioning" | |
| ]() | |
| instructpixtopixconditioning_431 = instructpixtopixconditioning.encode( | |
| positive=get_value_at_index(fluxguidance_430, 0), | |
| negative=get_value_at_index(cliptextencode_175, 0), | |
| vae=get_value_at_index(vaeloader_359, 0), | |
| pixels=get_value_at_index(depthanything_v2_436, 0), | |
| ) | |
| clipvisionloader = CLIPVisionLoader() | |
| clipvisionloader_438 = clipvisionloader.load_clip( | |
| clip_name="sigclip_vision_patch14_384.safetensors" | |
| ) | |
| loadimage_440 = loadimage.load_image( | |
| image="2013_CKS_01180_0005_000(the_court_of_pir_budaq_shiraz_iran_circa_1455-60074106).jpg" | |
| ) | |
| clipvisionencode = CLIPVisionEncode() | |
| clipvisionencode_439 = clipvisionencode.encode( | |
| crop="center", | |
| clip_vision=get_value_at_index(clipvisionloader_438, 0), | |
| image=get_value_at_index(loadimage_440, 0), | |
| ) | |
| stylemodelloader = StyleModelLoader() | |
| stylemodelloader_441 = stylemodelloader.load_style_model( | |
| style_model_name="flux1-redux-dev.safetensors" | |
| ) | |
| cr_text = NODE_CLASS_MAPPINGS["CR Text"]() | |
| cr_text_456 = cr_text.text_multiline(text="Flux_BFL_Depth_Redux") | |
| emptylatentimage = EmptyLatentImage() | |
| cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[ | |
| "CR Conditioning Input Switch" | |
| ]() | |
| cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]() | |
| stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
| basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| vaedecode = VAEDecode() | |
| saveimage = SaveImage() | |
| imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]() | |
| for q in range(10): | |
| emptylatentimage_10 = emptylatentimage.generate( | |
| width=get_value_at_index(imageresize_72, 1), | |
| height=get_value_at_index(imageresize_72, 2), | |
| batch_size=1, | |
| ) | |
| cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch( | |
| Input=1, | |
| conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0), | |
| conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0), | |
| ) | |
| cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch( | |
| Input=1, | |
| conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1), | |
| conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1), | |
| ) | |
| cr_model_input_switch_320 = cr_model_input_switch.switch( | |
| Input=1, | |
| model1=get_value_at_index(unetloader_358, 0), | |
| model2=get_value_at_index(unetloader_358, 0), | |
| ) | |
| stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel( | |
| strength=0.5, | |
| conditioning=get_value_at_index(instructpixtopixconditioning_431, 0), | |
| style_model=get_value_at_index(stylemodelloader_441, 0), | |
| clip_vision_output=get_value_at_index(clipvisionencode_439, 0), | |
| ) | |
| basicguider_366 = basicguider.get_guider( | |
| model=get_value_at_index(cr_model_input_switch_320, 0), | |
| conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0), | |
| ) | |
| basicscheduler_364 = basicscheduler.get_sigmas( | |
| scheduler="simple", | |
| steps=28, | |
| denoise=1, | |
| model=get_value_at_index(cr_model_input_switch_320, 0), | |
| ) | |
| samplercustomadvanced_362 = samplercustomadvanced.sample( | |
| noise=get_value_at_index(randomnoise_365, 0), | |
| guider=get_value_at_index(basicguider_366, 0), | |
| sampler=get_value_at_index(ksamplerselect_363, 0), | |
| sigmas=get_value_at_index(basicscheduler_364, 0), | |
| latent_image=get_value_at_index(emptylatentimage_10, 0), | |
| ) | |
| vaedecode_321 = vaedecode.decode( | |
| samples=get_value_at_index(samplercustomadvanced_362, 0), | |
| vae=get_value_at_index(vaeloader_359, 0), | |
| ) | |
| saveimage_327 = saveimage.save_images( | |
| filename_prefix=get_value_at_index(cr_text_456, 0), | |
| images=get_value_at_index(vaedecode_321, 0), | |
| ) | |
| fluxguidance_382 = fluxguidance.append( | |
| guidance=4, | |
| conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0), | |
| ) | |
| imagecrop_447 = imagecrop.execute( | |
| width=2000, | |
| height=2000, | |
| position="top-center", | |
| x_offset=0, | |
| y_offset=0, | |
| image=get_value_at_index(loadimage_440, 0), | |
| ) | |
| if __name__ == "__main__": | |
| main() | |