Spaces:
Runtime error
Runtime error
# flake8: noqa | |
# This file is used for deploying replicate models | |
# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2 | |
# push: cog push r8.im/tencentarc/gfpgan | |
# push (backup): cog push r8.im/xinntao/gfpgan | |
import os | |
os.system('python setup.py develop') | |
os.system('pip install realesrgan') | |
import cv2 | |
import shutil | |
import tempfile | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from gfpgan import GFPGANer | |
try: | |
from cog import BasePredictor, Input, Path | |
from realesrgan.utils import RealESRGANer | |
except Exception: | |
print('please install cog and realesrgan package') | |
class Predictor(BasePredictor): | |
def setup(self): | |
os.makedirs('output', exist_ok=True) | |
# download weights | |
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'): | |
os.system( | |
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights' | |
) | |
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'): | |
os.system( | |
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights') | |
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'): | |
os.system( | |
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights') | |
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'): | |
os.system( | |
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights') | |
if not os.path.exists('gfpgan/weights/RestoreFormer.pth'): | |
os.system( | |
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights' | |
) | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'gfpgan/weights/realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
self.upsampler = RealESRGANer( | |
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
# Use GFPGAN for face enhancement | |
self.face_enhancer = GFPGANer( | |
model_path='gfpgan/weights/GFPGANv1.4.pth', | |
upscale=2, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
self.current_version = 'v1.4' | |
def predict( | |
self, | |
img: Path = Input(description='Input'), | |
version: str = Input( | |
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.', | |
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], | |
default='v1.4'), | |
scale: float = Input(description='Rescaling factor', default=2), | |
) -> Path: | |
weight = 0.5 | |
print(img, version, scale, weight) | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
if self.current_version != version: | |
if version == 'v1.2': | |
self.face_enhancer = GFPGANer( | |
model_path='gfpgan/weights/GFPGANv1.2.pth', | |
upscale=2, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
self.current_version = 'v1.2' | |
elif version == 'v1.3': | |
self.face_enhancer = GFPGANer( | |
model_path='gfpgan/weights/GFPGANv1.3.pth', | |
upscale=2, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
self.current_version = 'v1.3' | |
elif version == 'v1.4': | |
self.face_enhancer = GFPGANer( | |
model_path='gfpgan/weights/GFPGANv1.4.pth', | |
upscale=2, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
self.current_version = 'v1.4' | |
elif version == 'RestoreFormer': | |
self.face_enhancer = GFPGANer( | |
model_path='gfpgan/weights/RestoreFormer.pth', | |
upscale=2, | |
arch='RestoreFormer', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
try: | |
_, _, output = self.face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
# save_path = f'output/out.{extension}' | |
# cv2.imwrite(save_path, output) | |
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}' | |
cv2.imwrite(str(out_path), output) | |
except Exception as error: | |
print('global exception: ', error) | |
finally: | |
clean_folder('output') | |
return out_path | |
def clean_folder(folder): | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print(f'Failed to delete {file_path}. Reason: {e}') | |