Spaces:
Runtime error
Runtime error
# Depth Anything V2 for Metric Depth Estimation | |
 | |
We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively. | |
# Pre-trained Models | |
We provide **six metric depth models** of three scales for indoor and outdoor scenes, respectively. | |
| Base Model | Params | Indoor (Hypersim) | Outdoor (Virtual KITTI 2) | | |
|:-|-:|:-:|:-:| | |
| Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Small/resolve/main/depth_anything_v2_metric_hypersim_vits.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Small/resolve/main/depth_anything_v2_metric_vkitti_vits.pth?download=true) | | |
| Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Base/resolve/main/depth_anything_v2_metric_hypersim_vitb.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Base/resolve/main/depth_anything_v2_metric_vkitti_vitb.pth?download=true) | | |
| Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) | | |
*We recommend to first try our larger models (if computational cost is affordable) and the indoor version.* | |
## Usage | |
### Prepraration | |
```bash | |
git clone https://github.com/DepthAnything/Depth-Anything-V2 | |
cd Depth-Anything-V2/metric_depth | |
pip install -r requirements.txt | |
``` | |
Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory. | |
### Use our models | |
```python | |
import cv2 | |
import torch | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]} | |
} | |
encoder = 'vitl' # or 'vits', 'vitb' | |
dataset = 'hypersim' # 'hypersim' for indoor model, 'vkitti' for outdoor model | |
max_depth = 20 # 20 for indoor model, 80 for outdoor model | |
model = DepthAnythingV2(**{**model_configs[encoder], 'max_depth': max_depth}) | |
model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_metric_{dataset}_{encoder}.pth', map_location='cpu')) | |
model.eval() | |
raw_img = cv2.imread('your/image/path') | |
depth = model.infer_image(raw_img) # HxW depth map in meters in numpy | |
``` | |
### Running script on images | |
Here, we take the `vitl` encoder as an example. You can also use `vitb` or `vits` encoders. | |
```bash | |
# indoor scenes | |
python run.py \ | |
--encoder vitl \ | |
--load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ | |
--max-depth 20 \ | |
--img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] | |
# outdoor scenes | |
python run.py \ | |
--encoder vitl \ | |
--load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \ | |
--max-depth 80 \ | |
--img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] | |
``` | |
### Project 2D images to point clouds: | |
```bash | |
python depth_to_pointcloud.py \ | |
--encoder vitl \ | |
--load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ | |
--max-depth 20 \ | |
--img-path <path> --outdir <outdir> | |
``` | |
### Reproduce training | |
Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then: | |
```bash | |
bash dist_train.sh | |
``` | |
## Citation | |
If you find this project useful, please consider citing: | |
```bibtex | |
@article{depth_anything_v2, | |
title={Depth Anything V2}, | |
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, | |
journal={arXiv:2406.09414}, | |
year={2024} | |
} | |
@inproceedings{depth_anything_v1, | |
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, | |
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, | |
booktitle={CVPR}, | |
year={2024} | |
} | |
``` | |