DeepMap_GUI / app_recovery.py
AshmithaIRRI's picture
Create app_recovery.py
5b1fe9d verified
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:47:37 2024
@author: Ashmitha
"""
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:25:57 2024
@author: Ashmitha
"""
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 9 15:44:40 2024
@author: Ashmitha
"""
import pandas as pd
import numpy as np
import gradio as gr
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile
#-------------------------------------Feature selection---------------------------------------------------------------------------------------------
def RandomForestFeatureSelection(trainX, trainy, num_features=60):
rf = RandomForestRegressor(n_estimators=1000, random_state=50)
rf.fit(trainX, trainy)
# Get feature importances
importances = rf.feature_importances_
# Select the top N important features
indices = np.argsort(importances)[-num_features:]
return indices
#----------------------------------------------------------GRU Model---------------------------------------------------------------------
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, Dense, BatchNormalization, Dropout, LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
def GRUModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.001, l2_reg=0.001, dropout_rate=0.2, feature_selection=True):
# Apply feature selection using Random Forest Regressor
if feature_selection:
# Use RandomForestRegressor to rank features by importance
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(trainX, trainy)
# Select features with importance greater than a threshold (e.g., mean importance)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
trainX = selector.transform(trainX)
if testX is not None:
testX = selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance.")
# Scale the input data using MinMaxScaler to normalize the feature range
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Scale the target variable using MinMaxScaler
target_scaler = MinMaxScaler()
trainy_scaled = target_scaler.fit_transform(trainy.reshape(-1, 1)) # Reshape to 2D for scaler
# Reshape trainX and testX to be 3D: (samples, timesteps, features)
trainX = trainX_scaled.reshape((trainX.shape[0], 1, trainX.shape[1])) # Adjusted for general feature count
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0], 1, testX.shape[1])) # Reshape testX if it exists
model = Sequential()
# GRU Layer
model.add(GRU(512, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=False, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
# Dense Layers with Batch Normalization, Dropout, LeakyReLU
model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
# Output Layer with ReLU activation to prevent negative predictions
model.add(Dense(1, activation="relu"))
# Compile the model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks for learning rate reduction and early stopping
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
# Train the model
history = model.fit(trainX, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
# Predict train and test
predicted_train = model.predict(trainX)
predicted_test = model.predict(testX) if testX is not None else None
# Flatten predictions
predicted_train = predicted_train.flatten()
if predicted_test is not None:
predicted_test = predicted_test.flatten()
else:
predicted_test = np.zeros_like(predicted_train)
# Inverse scale the predictions to get them back to original range
predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
if predicted_test is not None:
predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()
return predicted_train, predicted_test, history
#-----------------------------------------------------------DeepMap-------------------------------------------------------------------------------
def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.0001, l2_reg=0.0001, dropout_rate=0.3,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf, threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the important feature")
# Scaling the inputs
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Reshape for CNN input (samples, features, channels)
trainX = trainX_scaled.reshape((trainX.shape[0], trainX.shape[1], 1))
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0], testX.shape[1], 1))
model = Sequential()
# Convolutional layers
model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
# Flatten and Dense layers
model.add(Flatten())
model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(LeakyReLU(alpha=0.1))
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='linear'))
# Compile the model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
# Train the model
history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
predicted_train = model.predict(trainX).flatten()
predicted_test = model.predict(testX).flatten() if testX is not None else None
return predicted_train, predicted_test, history
#-------------------------------------------------------------------------Random Forest----------------------------------------------------
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(trainX, trainy)
selector=SelectFromModel(rf, threshold="mean", prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the feature selection")
# Log transformation of the target variable
# Scaling the feature data
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Define and train the RandomForest model
rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
history=rf_model.fit(trainX_scaled, trainy)
# Predictions
predicted_train = rf_model.predict(trainX_scaled)
predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#------------------------------------------------------------------------------XGboost---------------------------------------------------------------
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf,threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance")
#trainy_log = np.log1p(trainy) # Log-transform to handle large phenotypic values
#if testy is not None:
# testy_log = np.log1p(testy)
# Scale the features
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Define and train the XGBoost model
# xgb_model = XGBRegressor(n_estimators=n_estimators, max_depth=100, random_state=42)
#xgb_model = XGBRegressor(objective ='reg:linear',
# n_estimators = 100, seed = 100)
xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
history=xgb_model.fit(trainX, trainy)
param_grid={
"learning_rate":0.01,
"max_depth" : 10,
"n_estimators": 100,
"min_child_weight": 5
}
# Predictions
predicted_train = xgb_model.predict(trainX_scaled)
predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#----------------------------------------reading file----------------------------------------------------------------------------------------
# Helper function to read the uploaded CSV file
def read_csv_file(uploaded_file):
if uploaded_file is not None:
if hasattr(uploaded_file, 'data'): # For NamedBytes
return pd.read_csv(io.BytesIO(uploaded_file.data))
elif hasattr(uploaded_file, 'name'): # For NamedString
return pd.read_csv(uploaded_file.name)
return None
#-----------------------------------------------------------------calculate topsis score--------------------------------------------------------
def calculate_topsis_score(df):
# Normalize the metrics
metrics = df[['Train_MSE', 'Train_RMSE', 'Train_R2', 'Train_Corr']].dropna() # Ensure no NaN values
norm_metrics = metrics / np.sqrt((metrics ** 2).sum(axis=0))
# Define ideal best and worst for each metric
ideal_best = pd.Series(index=norm_metrics.columns)
ideal_worst = pd.Series(index=norm_metrics.columns)
# For RMSE and MSE (minimization criteria): min is best, max is worst
for col in ['Train_MSE', 'Train_RMSE']:
ideal_best[col] = norm_metrics[col].min()
ideal_worst[col] = norm_metrics[col].max()
# For R2 and Corr (maximization criteria): max is best, min is worst
for col in ['Train_R2', 'Train_Corr']:
ideal_best[col] = norm_metrics[col].max()
ideal_worst[col] = norm_metrics[col].min()
# Calculate Euclidean distance to ideal best and worst
dist_to_best = np.sqrt(((norm_metrics - ideal_best) ** 2).sum(axis=1))
dist_to_worst = np.sqrt(((norm_metrics - ideal_worst) ** 2).sum(axis=1))
# Calculate TOPSIS score
topsis_score = dist_to_worst / (dist_to_best + dist_to_worst)
df['TOPSIS_Score'] = np.nan # Initialize with NaN
df.loc[metrics.index, 'TOPSIS_Score'] = topsis_score # Assign TOPSIS scores
return df
#--------------------------------------------------- Nested Cross validation---------------------------------------------------------------------------
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import mean_squared_error, r2_score
from scipy.stats import pearsonr
import numpy as np
import pandas as pd
def NestedKFoldCrossValidation(
training_data, training_additive, testing_data, testing_additive,
training_dominance, testing_dominance, epochs, learning_rate, min_child_weight,
batch_size=64, outer_n_splits=2, output_file='cross_validation_results.csv',
predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True
):
if 'phenotypes' not in training_data.columns:
raise ValueError("Training data does not contain the 'phenotypes' column.")
# Remove Sample ID columns from additive and dominance data
training_additive = training_additive.iloc[:, 1:]
testing_additive = testing_additive.iloc[:, 1:]
training_dominance = training_dominance.iloc[:, 1:]
testing_dominance = testing_dominance.iloc[:, 1:]
# Merge training and testing data with additive and dominance components
training_data_merged = pd.concat([training_data, training_additive, training_dominance], axis=1)
testing_data_merged = pd.concat([testing_data, testing_additive, testing_dominance], axis=1)
phenotypic_info = training_data['phenotypes'].values
phenotypic_test_info = testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
sample_ids = testing_data.iloc[:, 0].values
training_genotypic_data_merged = training_data_merged.iloc[:, 2:].values
testing_genotypic_data_merged = testing_data_merged.iloc[:, 2:].values
# Feature selection
if feature_selection:
rf = RandomForestRegressor(n_estimators=100, random_state=65)
rf.fit(training_genotypic_data_merged, phenotypic_info)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
training_genotypic_data_merged = selector.transform(training_genotypic_data_merged)
testing_genotypic_data_merged = selector.transform(testing_genotypic_data_merged)
print(f"Selected {training_genotypic_data_merged.shape[1]} features based on importance.")
# Standardize the genotypic data
scaler = StandardScaler()
training_genotypic_data_merged = scaler.fit_transform(training_genotypic_data_merged)
testing_genotypic_data_merged = scaler.transform(testing_genotypic_data_merged)
outer_kf = KFold(n_splits=outer_n_splits)
results = []
all_predicted_phenotypes = []
def calculate_metrics(true_values, predicted_values):
mse = mean_squared_error(true_values, predicted_values)
rmse = np.sqrt(mse)
r2 = r2_score(true_values, predicted_values)
corr = pearsonr(true_values, predicted_values)[0]
return mse, rmse, r2, corr
models = [
('GRUModel', GRUModel),
('CNNModel', CNNModel),
('RFModel', RFModel),
('XGBoostModel', XGBoostModel)
]
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
outer_trainX = training_genotypic_data_merged[outer_train_index]
outer_trainy = phenotypic_info[outer_train_index]
outer_testX = testing_genotypic_data_merged
outer_testy = phenotypic_test_info
for model_name, model_func in models:
print(f"Running model: {model_name} for fold {outer_fold}")
if model_name in ['GRUModel', 'CNNModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
elif model_name in ['RFModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
else:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, learning_rate, min_child_weight)
# Calculate metrics
mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)
results.append({
'Model': model_name,
'Fold': outer_fold,
'Train_MSE': mse_train,
'Train_RMSE': rmse_train,
'Train_R2': r2_train,
'Train_Corr': corr_train,
'Test_MSE': mse_test,
'Test_RMSE': rmse_test,
'Test_R2': r2_test,
'Test_Corr': corr_test
})
if predicted_test is not None:
predicted_test_df = pd.DataFrame({
'Sample_ID': sample_ids,
'Predicted_Phenotype': predicted_test,
'Model': model_name
})
all_predicted_phenotypes.append(predicted_test_df)
# Compile results
results_df = pd.DataFrame(results)
avg_results_df = results_df.groupby('Model').agg({
'Train_MSE': 'mean',
'Train_RMSE': 'mean',
'Train_R2': 'mean',
'Train_Corr': 'mean',
'Test_MSE': 'mean',
'Test_RMSE': 'mean',
'Test_R2': 'mean',
'Test_Corr': 'mean'
}).reset_index()
# Calculate the TOPSIS score for the average metrics (considering only MSE, RMSE, R², and Correlation)
def calculate_topsis_score(df):
# Normalize the data
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
# Calculate the positive and negative ideal solutions
ideal_positive = norm_df.max(axis=0)
ideal_negative = norm_df.min(axis=0)
# Calculate the Euclidean distances
dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))
# Calculate the TOPSIS score
topsis_score = dist_negative / (dist_positive + dist_negative)
# Add the TOPSIS score to the dataframe
df['TOPSIS_Score'] = topsis_score
return df
avg_results_df = calculate_topsis_score(avg_results_df)
# Save the results with TOPSIS scores to the file
avg_results_df.to_csv(output_file, index=False)
# Save predicted phenotypes
if all_predicted_phenotypes:
predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
predicted_all_df.to_csv(predicted_phenotype_file, index=False)
return avg_results_df, predicted_all_df if all_predicted_phenotypes else None
# Save the results to the file
#results_df.to_csv(output_file, index=False)
# Save predicted phenotypes
#if all_predicted_phenotypes:
# predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
#predicted_all_df.to_csv(predicted_phenotype_file, index=False)
# return results_df, predicted_all_df if all_predicted_phenotypes else None
#--------------------------------------------------------------------Gradio interface---------------------------------------------------------------
def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file,
training_dominance_file, testing_dominance_file,feature_selection,learning_rate,min_child_weight):
# Default parameters
epochs = 1000
batch_size = 64
inner_n_splits = 2
min_child_weight=5
learning_rate=0.001
#learning_rate=learning_rate
# min_child_weight=min_child_weight
# Load datasets
training_data = pd.read_csv(training_file.name)
training_additive = pd.read_csv(training_additive_file.name)
testing_data = pd.read_csv(testing_file.name)
testing_additive = pd.read_csv(testing_additive_file.name)
training_dominance = pd.read_csv(training_dominance_file.name)
testing_dominance = pd.read_csv(testing_dominance_file.name)
# Call the cross-validation function
results, predicted_phenotypes = NestedKFoldCrossValidation(
training_data=training_data,
training_additive=training_additive,
testing_data=testing_data,
testing_additive=testing_additive,
training_dominance=training_dominance,
testing_dominance=testing_dominance,
epochs=epochs,
batch_size=batch_size,
#outer_n_splits= outer_n_splits,
#outer_n_splits=outer_n_splits,
#inner_n_splits=inner_n_splits,
learning_rate=learning_rate,
min_child_weight=min_child_weight,
feature_selection=feature_selection
)
# Save outputs
results_file = "cross_validation_results.csv"
predicted_file = "predicted_phenotype.csv"
results.to_csv(results_file, index=False)
predicted_phenotypes.to_csv(predicted_file, index=False)
return results_file, predicted_file
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")
with gr.Row():
training_file = gr.File(label="Upload Training Data (CSV)")
training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")
with gr.Row():
testing_file = gr.File(label="Upload Testing Data (CSV)")
testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")
with gr.Row():
feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)
output1 = gr.File(label="Cross-Validation Results (CSV)")
output2 = gr.File(label="Predicted Phenotypes (CSV)")
submit_btn = gr.Button("Run DeepMap")
submit_btn.click(
run_cross_validation,
inputs=[
training_file, training_additive_file, testing_file,
testing_additive_file, training_dominance_file,testing_dominance_file,
feature_selection
],
outputs=[output1, output2]
)
# Launch the interface
interface.launch()