|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import logging |
|
import pathlib |
|
import typing |
|
import os |
|
|
|
from deepspeed import zero |
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
import transformers |
|
from transformers import Trainer, BitsAndBytesConfig, deepspeed |
|
import torch |
|
|
|
from fastchat.train.train import ( |
|
DataArguments, |
|
ModelArguments, |
|
make_supervised_data_module, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class TrainingArguments(transformers.TrainingArguments): |
|
cache_dir: typing.Optional[str] = field(default=None) |
|
optim: str = field(default="adamw_torch") |
|
model_max_length: int = field( |
|
default=512, |
|
metadata={ |
|
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
}, |
|
) |
|
flash_attn: bool = False |
|
|
|
|
|
@dataclass |
|
class LoraArguments: |
|
lora_r: int = 8 |
|
lora_alpha: int = 16 |
|
lora_dropout: float = 0.05 |
|
lora_target_modules: typing.List[str] = field( |
|
default_factory=lambda: ["q_proj", "k_proj", "v_proj"] |
|
) |
|
lora_weight_path: str = "" |
|
lora_bias: str = "none" |
|
q_lora: bool = False |
|
|
|
|
|
def maybe_zero_3(param): |
|
if hasattr(param, "ds_id"): |
|
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE |
|
with zero.GatheredParameters([param]): |
|
param = param.data.detach().cpu().clone() |
|
else: |
|
param = param.detach().cpu().clone() |
|
return param |
|
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias): |
|
if bias == "none": |
|
to_return = {k: t for k, t in named_params if "lora_" in k} |
|
elif bias == "all": |
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} |
|
elif bias == "lora_only": |
|
to_return = {} |
|
maybe_lora_bias = {} |
|
lora_bias_names = set() |
|
for k, t in named_params: |
|
if "lora_" in k: |
|
to_return[k] = t |
|
bias_name = k.split("lora_")[0] + "bias" |
|
lora_bias_names.add(bias_name) |
|
elif "bias" in k: |
|
maybe_lora_bias[k] = t |
|
for k, t in maybe_lora_bias: |
|
if bias_name in lora_bias_names: |
|
to_return[bias_name] = t |
|
else: |
|
raise NotImplementedError |
|
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def train(): |
|
parser = transformers.HfArgumentParser( |
|
(ModelArguments, DataArguments, TrainingArguments, LoraArguments) |
|
) |
|
( |
|
model_args, |
|
data_args, |
|
training_args, |
|
lora_args, |
|
) = parser.parse_args_into_dataclasses() |
|
|
|
if training_args.flash_attn: |
|
replace_llama_attn_with_flash_attn() |
|
|
|
device_map = None |
|
world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
ddp = world_size != 1 |
|
if lora_args.q_lora: |
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None |
|
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled(): |
|
logging.warning( |
|
"FSDP and ZeRO3 are both currently incompatible with QLoRA." |
|
) |
|
|
|
compute_dtype = ( |
|
torch.float16 |
|
if training_args.fp16 |
|
else (torch.bfloat16 if training_args.bf16 else torch.float32) |
|
) |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
device_map=device_map, |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=compute_dtype, |
|
) |
|
if lora_args.q_lora |
|
else None, |
|
) |
|
lora_config = LoraConfig( |
|
r=lora_args.lora_r, |
|
lora_alpha=lora_args.lora_alpha, |
|
target_modules=lora_args.lora_target_modules, |
|
lora_dropout=lora_args.lora_dropout, |
|
bias=lora_args.lora_bias, |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
if lora_args.q_lora: |
|
model = prepare_model_for_kbit_training( |
|
model, use_gradient_checkpointing=training_args.gradient_checkpointing |
|
) |
|
if not ddp and torch.cuda.device_count() > 1: |
|
|
|
model.is_parallelizable = True |
|
model.model_parallel = True |
|
|
|
model = get_peft_model(model, lora_config) |
|
if training_args.flash_attn: |
|
for name, module in model.named_modules(): |
|
if "norm" in name: |
|
module = module.to(compute_dtype) |
|
if "lm_head" in name or "embed_tokens" in name: |
|
if hasattr(module, "weight"): |
|
module = module.to(compute_dtype) |
|
if training_args.deepspeed is not None and training_args.local_rank == 0: |
|
model.print_trainable_parameters() |
|
|
|
if training_args.gradient_checkpointing: |
|
model.enable_input_require_grads() |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
model_max_length=training_args.model_max_length, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
tokenizer.pad_token = tokenizer.unk_token |
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) |
|
trainer = Trainer( |
|
model=model, tokenizer=tokenizer, args=training_args, **data_module |
|
) |
|
|
|
model.config.use_cache = False |
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): |
|
trainer.train(resume_from_checkpoint=True) |
|
else: |
|
trainer.train() |
|
|
|
trainer.save_state() |
|
|
|
|
|
if deepspeed.is_deepspeed_zero3_enabled(): |
|
|
|
|
|
|
|
|
|
|
|
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() |
|
if training_args.local_rank == 0: |
|
state_dict = state_dict_zero3 |
|
else: |
|
|
|
state_dict = get_peft_state_maybe_zero_3( |
|
model.named_parameters(), lora_args.lora_bias |
|
) |
|
|
|
if training_args.local_rank == 0: |
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
train() |
|
|