|
"""Model adapter registration.""" |
|
|
|
import math |
|
import os |
|
import re |
|
import sys |
|
from typing import Dict, List, Optional |
|
import warnings |
|
|
|
if sys.version_info >= (3, 9): |
|
from functools import cache |
|
else: |
|
from functools import lru_cache as cache |
|
|
|
import psutil |
|
import torch |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoTokenizer, |
|
LlamaTokenizer, |
|
LlamaForCausalLM, |
|
T5Tokenizer, |
|
) |
|
|
|
from fastchat.constants import CPU_ISA |
|
from fastchat.conversation import Conversation, get_conv_template |
|
from fastchat.model.compression import load_compress_model |
|
from fastchat.model.llama_condense_monkey_patch import replace_llama_with_condense |
|
from fastchat.model.model_chatglm import generate_stream_chatglm |
|
from fastchat.model.model_codet5p import generate_stream_codet5p |
|
from fastchat.model.model_falcon import generate_stream_falcon |
|
from fastchat.model.model_yuan2 import generate_stream_yuan2 |
|
from fastchat.model.model_exllama import generate_stream_exllama |
|
from fastchat.model.model_xfastertransformer import generate_stream_xft |
|
from fastchat.model.monkey_patch_non_inplace import ( |
|
replace_llama_attn_with_non_inplace_operations, |
|
) |
|
from fastchat.modules.awq import AWQConfig, load_awq_quantized |
|
from fastchat.modules.exllama import ExllamaConfig, load_exllama_model |
|
from fastchat.modules.xfastertransformer import load_xft_model, XftConfig |
|
from fastchat.modules.gptq import GptqConfig, load_gptq_quantized |
|
from fastchat.utils import get_gpu_memory |
|
|
|
|
|
|
|
peft_share_base_weights = ( |
|
os.environ.get("PEFT_SHARE_BASE_WEIGHTS", "false").lower() == "true" |
|
) |
|
|
|
ANTHROPIC_MODEL_LIST = ( |
|
"claude-1", |
|
"claude-2", |
|
"claude-2.0", |
|
"claude-2.1", |
|
"claude-instant-1", |
|
"claude-instant-1.2", |
|
) |
|
|
|
OPENAI_MODEL_LIST = ( |
|
"gpt-3.5-turbo", |
|
"gpt-3.5-turbo-0301", |
|
"gpt-3.5-turbo-0613", |
|
"gpt-3.5-turbo-1106", |
|
"gpt-4", |
|
"gpt-4-0314", |
|
"gpt-4-0613", |
|
"gpt-4-turbo", |
|
) |
|
|
|
|
|
class BaseModelAdapter: |
|
"""The base and the default model adapter.""" |
|
|
|
use_fast_tokenizer = True |
|
|
|
def match(self, model_path: str): |
|
return True |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
use_fast=self.use_fast_tokenizer, |
|
revision=revision, |
|
trust_remote_code=True, |
|
) |
|
except TypeError: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=False, revision=revision, trust_remote_code=True |
|
) |
|
try: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
except NameError: |
|
model = AutoModel.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def load_compress_model(self, model_path, device, torch_dtype, revision="main"): |
|
return load_compress_model( |
|
model_path, |
|
device, |
|
torch_dtype, |
|
use_fast=self.use_fast_tokenizer, |
|
revision=revision, |
|
) |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("one_shot") |
|
|
|
|
|
|
|
|
|
model_adapters: List[BaseModelAdapter] = [] |
|
|
|
|
|
def register_model_adapter(cls): |
|
"""Register a model adapter.""" |
|
model_adapters.append(cls()) |
|
|
|
|
|
@cache |
|
def get_model_adapter(model_path: str) -> BaseModelAdapter: |
|
"""Get a model adapter for a model_path.""" |
|
model_path_basename = os.path.basename(os.path.normpath(model_path)) |
|
|
|
|
|
for adapter in model_adapters: |
|
if adapter.match(model_path_basename) and type(adapter) != BaseModelAdapter: |
|
return adapter |
|
|
|
|
|
for adapter in model_adapters: |
|
if adapter.match(model_path): |
|
return adapter |
|
|
|
raise ValueError(f"No valid model adapter for {model_path}") |
|
|
|
|
|
def raise_warning_for_incompatible_cpu_offloading_configuration( |
|
device: str, load_8bit: bool, cpu_offloading: bool |
|
): |
|
if cpu_offloading: |
|
if not load_8bit: |
|
warnings.warn( |
|
"The cpu-offloading feature can only be used while also using 8-bit-quantization.\n" |
|
"Use '--load-8bit' to enable 8-bit-quantization\n" |
|
"Continuing without cpu-offloading enabled\n" |
|
) |
|
return False |
|
if not "linux" in sys.platform: |
|
warnings.warn( |
|
"CPU-offloading is only supported on linux-systems due to the limited compatability with the bitsandbytes-package\n" |
|
"Continuing without cpu-offloading enabled\n" |
|
) |
|
return False |
|
if device != "cuda": |
|
warnings.warn( |
|
"CPU-offloading is only enabled when using CUDA-devices\n" |
|
"Continuing without cpu-offloading enabled\n" |
|
) |
|
return False |
|
return cpu_offloading |
|
|
|
|
|
def load_model( |
|
model_path: str, |
|
device: str = "cuda", |
|
num_gpus: int = 1, |
|
max_gpu_memory: Optional[str] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
load_8bit: bool = False, |
|
cpu_offloading: bool = False, |
|
gptq_config: Optional[GptqConfig] = None, |
|
awq_config: Optional[AWQConfig] = None, |
|
exllama_config: Optional[ExllamaConfig] = None, |
|
xft_config: Optional[XftConfig] = None, |
|
revision: str = "main", |
|
debug: bool = False, |
|
): |
|
"""Load a model from Hugging Face.""" |
|
import accelerate |
|
|
|
|
|
adapter = get_model_adapter(model_path) |
|
|
|
|
|
cpu_offloading = raise_warning_for_incompatible_cpu_offloading_configuration( |
|
device, load_8bit, cpu_offloading |
|
) |
|
if device == "cpu": |
|
kwargs = {"torch_dtype": torch.float32} |
|
if CPU_ISA in ["avx512_bf16", "amx"]: |
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
|
|
kwargs = {"torch_dtype": torch.bfloat16} |
|
except ImportError: |
|
warnings.warn( |
|
"Intel Extension for PyTorch is not installed, it can be installed to accelerate cpu inference" |
|
) |
|
elif device == "cuda": |
|
kwargs = {"torch_dtype": torch.float16} |
|
if num_gpus != 1: |
|
kwargs["device_map"] = "auto" |
|
if max_gpu_memory is None: |
|
kwargs[ |
|
"device_map" |
|
] = "sequential" |
|
available_gpu_memory = get_gpu_memory(num_gpus) |
|
kwargs["max_memory"] = { |
|
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" |
|
for i in range(num_gpus) |
|
} |
|
else: |
|
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)} |
|
elif device == "mps": |
|
kwargs = {"torch_dtype": torch.float16} |
|
import transformers |
|
|
|
version = tuple(int(v) for v in transformers.__version__.split(".")) |
|
if version < (4, 35, 0): |
|
|
|
|
|
|
|
|
|
|
|
replace_llama_attn_with_non_inplace_operations() |
|
elif device == "xpu": |
|
kwargs = {"torch_dtype": torch.bfloat16} |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except ImportError: |
|
warnings.warn( |
|
"Intel Extension for PyTorch is not installed, but is required for xpu inference." |
|
) |
|
elif device == "npu": |
|
kwargs = {"torch_dtype": torch.float16} |
|
|
|
try: |
|
import torch_npu |
|
except ImportError: |
|
warnings.warn("Ascend Extension for PyTorch is not installed.") |
|
else: |
|
raise ValueError(f"Invalid device: {device}") |
|
|
|
if cpu_offloading: |
|
|
|
from transformers import BitsAndBytesConfig |
|
|
|
if "max_memory" in kwargs: |
|
kwargs["max_memory"]["cpu"] = ( |
|
str(math.floor(psutil.virtual_memory().available / 2**20)) + "Mib" |
|
) |
|
kwargs["quantization_config"] = BitsAndBytesConfig( |
|
load_in_8bit_fp32_cpu_offload=cpu_offloading |
|
) |
|
kwargs["load_in_8bit"] = load_8bit |
|
elif load_8bit: |
|
if num_gpus != 1: |
|
warnings.warn( |
|
"8-bit quantization is not supported for multi-gpu inference." |
|
) |
|
else: |
|
model, tokenizer = adapter.load_compress_model( |
|
model_path=model_path, |
|
device=device, |
|
torch_dtype=kwargs["torch_dtype"], |
|
revision=revision, |
|
) |
|
if debug: |
|
print(model) |
|
return model, tokenizer |
|
elif awq_config and awq_config.wbits < 16: |
|
assert ( |
|
awq_config.wbits == 4 |
|
), "Currently we only support 4-bit inference for AWQ." |
|
model, tokenizer = load_awq_quantized(model_path, awq_config, device) |
|
if num_gpus != 1: |
|
device_map = accelerate.infer_auto_device_map( |
|
model, |
|
max_memory=kwargs["max_memory"], |
|
no_split_module_classes=[ |
|
"OPTDecoderLayer", |
|
"LlamaDecoderLayer", |
|
"BloomBlock", |
|
"MPTBlock", |
|
"DecoderLayer", |
|
], |
|
) |
|
model = accelerate.dispatch_model( |
|
model, device_map=device_map, offload_buffers=True |
|
) |
|
else: |
|
model.to(device) |
|
return model, tokenizer |
|
elif gptq_config and gptq_config.wbits < 16: |
|
model, tokenizer = load_gptq_quantized(model_path, gptq_config) |
|
if num_gpus != 1: |
|
device_map = accelerate.infer_auto_device_map( |
|
model, |
|
max_memory=kwargs["max_memory"], |
|
no_split_module_classes=["LlamaDecoderLayer"], |
|
) |
|
model = accelerate.dispatch_model( |
|
model, device_map=device_map, offload_buffers=True |
|
) |
|
else: |
|
model.to(device) |
|
return model, tokenizer |
|
elif exllama_config: |
|
model, tokenizer = load_exllama_model(model_path, exllama_config) |
|
return model, tokenizer |
|
elif xft_config: |
|
model, tokenizer = load_xft_model(model_path, xft_config) |
|
return model, tokenizer |
|
kwargs["revision"] = revision |
|
|
|
if dtype is not None: |
|
kwargs["torch_dtype"] = dtype |
|
|
|
if os.environ.get("FASTCHAT_USE_MODELSCOPE", "False").lower() == "true": |
|
|
|
|
|
try: |
|
from modelscope.hub.snapshot_download import snapshot_download |
|
|
|
if not os.path.exists(model_path): |
|
model_path = snapshot_download(model_id=model_path, revision=revision) |
|
except ImportError as e: |
|
warnings.warn( |
|
"Use model from www.modelscope.cn need pip install modelscope" |
|
) |
|
raise e |
|
|
|
|
|
model, tokenizer = adapter.load_model(model_path, kwargs) |
|
|
|
if ( |
|
device == "cpu" |
|
and kwargs["torch_dtype"] is torch.bfloat16 |
|
and CPU_ISA is not None |
|
): |
|
model = ipex.optimize(model, dtype=kwargs["torch_dtype"]) |
|
|
|
if (device == "cuda" and num_gpus == 1 and not cpu_offloading) or device in ( |
|
"mps", |
|
"xpu", |
|
"npu", |
|
): |
|
model.to(device) |
|
|
|
if device == "xpu": |
|
model = torch.xpu.optimize(model, dtype=kwargs["torch_dtype"], inplace=True) |
|
|
|
if debug: |
|
print(model) |
|
|
|
return model, tokenizer |
|
|
|
|
|
def get_conversation_template(model_path: str) -> Conversation: |
|
"""Get the default conversation template.""" |
|
|
|
|
|
|
|
|
|
return get_conv_template("zero_shot") |
|
|
|
|
|
def get_generate_stream_function(model: torch.nn.Module, model_path: str): |
|
"""Get the generate_stream function for inference.""" |
|
from fastchat.serve.inference import generate_stream |
|
|
|
model_type = str(type(model)).lower() |
|
is_peft = "peft" in model_type |
|
is_chatglm = "chatglm" in model_type |
|
is_falcon = "rwforcausallm" in model_type |
|
is_codet5p = "codet5p" in model_type |
|
is_exllama = "exllama" in model_type |
|
is_xft = "xft" in model_type |
|
is_yuan = "yuan" in model_type |
|
|
|
if is_chatglm: |
|
return generate_stream_chatglm |
|
elif is_falcon: |
|
return generate_stream_falcon |
|
elif is_codet5p: |
|
return generate_stream_codet5p |
|
elif is_exllama: |
|
return generate_stream_exllama |
|
elif is_xft: |
|
return generate_stream_xft |
|
elif is_yuan: |
|
return generate_stream_yuan2 |
|
|
|
elif peft_share_base_weights and is_peft: |
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def generate_stream_peft( |
|
model, |
|
tokenizer, |
|
params: Dict, |
|
device: str, |
|
context_len: int, |
|
stream_interval: int = 2, |
|
judge_sent_end: bool = False, |
|
): |
|
model.set_adapter(model_path) |
|
base_model_type = str(type(model.base_model.model)) |
|
is_chatglm = "chatglm" in base_model_type |
|
is_falcon = "rwforcausallm" in base_model_type |
|
is_codet5p = "codet5p" in base_model_type |
|
is_exllama = "exllama" in base_model_type |
|
is_xft = "xft" in base_model_type |
|
is_yuan = "yuan" in base_model_type |
|
|
|
generate_stream_function = generate_stream |
|
if is_chatglm: |
|
generate_stream_function = generate_stream_chatglm |
|
elif is_falcon: |
|
generate_stream_function = generate_stream_falcon |
|
elif is_codet5p: |
|
generate_stream_function = generate_stream_codet5p |
|
elif is_exllama: |
|
generate_stream_function = generate_stream_exllama |
|
elif is_xft: |
|
generate_stream_function = generate_stream_xft |
|
elif is_yuan: |
|
generate_stream_function = generate_stream_yuan2 |
|
for x in generate_stream_function( |
|
model, |
|
tokenizer, |
|
params, |
|
device, |
|
context_len, |
|
stream_interval, |
|
judge_sent_end, |
|
): |
|
yield x |
|
|
|
return generate_stream_peft |
|
else: |
|
return generate_stream |
|
|
|
|
|
def add_model_args(parser): |
|
parser.add_argument( |
|
"--model-path", |
|
type=str, |
|
default="lmsys/vicuna-7b-v1.5", |
|
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default="main", |
|
help="Hugging Face Hub model revision identifier", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
choices=["cpu", "cuda", "mps", "xpu", "npu"], |
|
default="cuda", |
|
help="The device type", |
|
) |
|
parser.add_argument( |
|
"--gpus", |
|
type=str, |
|
default=None, |
|
help="A single GPU like 1 or multiple GPUs like 0,2", |
|
) |
|
parser.add_argument("--num-gpus", type=int, default=1) |
|
parser.add_argument( |
|
"--max-gpu-memory", |
|
type=str, |
|
help="The maximum memory per GPU for storing model weights. Use a string like '13Gib'", |
|
) |
|
parser.add_argument( |
|
"--dtype", |
|
type=str, |
|
choices=["float32", "float16", "bfloat16"], |
|
help="Override the default dtype. If not set, it will use float16 on GPU and float32 on CPU.", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--load-8bit", action="store_true", help="Use 8-bit quantization" |
|
) |
|
parser.add_argument( |
|
"--cpu-offloading", |
|
action="store_true", |
|
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU", |
|
) |
|
parser.add_argument( |
|
"--gptq-ckpt", |
|
type=str, |
|
default=None, |
|
help="Used for GPTQ. The path to the local GPTQ checkpoint.", |
|
) |
|
parser.add_argument( |
|
"--gptq-wbits", |
|
type=int, |
|
default=16, |
|
choices=[2, 3, 4, 8, 16], |
|
help="Used for GPTQ. #bits to use for quantization", |
|
) |
|
parser.add_argument( |
|
"--gptq-groupsize", |
|
type=int, |
|
default=-1, |
|
help="Used for GPTQ. Groupsize to use for quantization; default uses full row.", |
|
) |
|
parser.add_argument( |
|
"--gptq-act-order", |
|
action="store_true", |
|
help="Used for GPTQ. Whether to apply the activation order GPTQ heuristic", |
|
) |
|
parser.add_argument( |
|
"--awq-ckpt", |
|
type=str, |
|
default=None, |
|
help="Used for AWQ. Load quantized model. The path to the local AWQ checkpoint.", |
|
) |
|
parser.add_argument( |
|
"--awq-wbits", |
|
type=int, |
|
default=16, |
|
choices=[4, 16], |
|
help="Used for AWQ. #bits to use for AWQ quantization", |
|
) |
|
parser.add_argument( |
|
"--awq-groupsize", |
|
type=int, |
|
default=-1, |
|
help="Used for AWQ. Groupsize to use for AWQ quantization; default uses full row.", |
|
) |
|
parser.add_argument( |
|
"--enable-exllama", |
|
action="store_true", |
|
help="Used for exllamabv2. Enable exllamaV2 inference framework.", |
|
) |
|
parser.add_argument( |
|
"--exllama-max-seq-len", |
|
type=int, |
|
default=4096, |
|
help="Used for exllamabv2. Max sequence length to use for exllamav2 framework; default 4096 sequence length.", |
|
) |
|
parser.add_argument( |
|
"--exllama-gpu-split", |
|
type=str, |
|
default=None, |
|
help="Used for exllamabv2. Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7", |
|
) |
|
parser.add_argument( |
|
"--exllama-cache-8bit", |
|
action="store_true", |
|
help="Used for exllamabv2. Use 8-bit cache to save VRAM.", |
|
) |
|
parser.add_argument( |
|
"--enable-xft", |
|
action="store_true", |
|
help="Used for xFasterTransformer Enable xFasterTransformer inference framework.", |
|
) |
|
parser.add_argument( |
|
"--xft-max-seq-len", |
|
type=int, |
|
default=4096, |
|
help="Used for xFasterTransformer. Max sequence length to use for xFasterTransformer framework; default 4096 sequence length.", |
|
) |
|
parser.add_argument( |
|
"--xft-dtype", |
|
type=str, |
|
choices=["fp16", "bf16", "int8", "bf16_fp16", "bf16_int8"], |
|
help="Override the default dtype. If not set, it will use bfloat16 for first token and float16 next tokens on CPU.", |
|
default=None, |
|
) |
|
|
|
|
|
def remove_parent_directory_name(model_path): |
|
"""Remove parent directory name.""" |
|
if model_path[-1] == "/": |
|
model_path = model_path[:-1] |
|
return model_path.split("/")[-1] |
|
|
|
|
|
peft_model_cache = {} |
|
|
|
|
|
class PeftModelAdapter: |
|
"""Loads any "peft" model and it's base model.""" |
|
|
|
def match(self, model_path: str): |
|
"""Accepts any model path with "peft" in the name""" |
|
if os.path.exists(os.path.join(model_path, "adapter_config.json")): |
|
return True |
|
return "peft" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
"""Loads the base model then the (peft) adapter weights""" |
|
from peft import PeftConfig, PeftModel |
|
|
|
config = PeftConfig.from_pretrained(model_path) |
|
base_model_path = config.base_model_name_or_path |
|
if "peft" in base_model_path: |
|
raise ValueError( |
|
f"PeftModelAdapter cannot load a base model with 'peft' in the name: {config.base_model_name_or_path}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if peft_share_base_weights: |
|
if base_model_path in peft_model_cache: |
|
model, tokenizer = peft_model_cache[base_model_path] |
|
|
|
|
|
model.load_adapter(model_path, adapter_name=model_path) |
|
else: |
|
base_adapter = get_model_adapter(base_model_path) |
|
base_model, tokenizer = base_adapter.load_model( |
|
base_model_path, from_pretrained_kwargs |
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained( |
|
base_model, model_path, adapter_name=model_path |
|
) |
|
peft_model_cache[base_model_path] = (model, tokenizer) |
|
return model, tokenizer |
|
|
|
|
|
base_adapter = get_model_adapter(base_model_path) |
|
base_model, tokenizer = base_adapter.load_model( |
|
base_model_path, from_pretrained_kwargs |
|
) |
|
model = PeftModel.from_pretrained(base_model, model_path) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
"""Uses the conv template of the base model""" |
|
from peft import PeftConfig, PeftModel |
|
|
|
config = PeftConfig.from_pretrained(model_path) |
|
if "peft" in config.base_model_name_or_path: |
|
raise ValueError( |
|
f"PeftModelAdapter cannot load a base model with 'peft' in the name: {config.base_model_name_or_path}" |
|
) |
|
base_model_path = config.base_model_name_or_path |
|
base_adapter = get_model_adapter(base_model_path) |
|
return base_adapter.get_default_conv_template(config.base_model_name_or_path) |
|
|
|
|
|
class VicunaAdapter(BaseModelAdapter): |
|
"Model adapter for Vicuna models (e.g., lmsys/vicuna-7b-v1.5)" "" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "vicuna" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=self.use_fast_tokenizer, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
self.raise_warning_for_old_weights(model) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
if "v0" in remove_parent_directory_name(model_path): |
|
return get_conv_template("one_shot") |
|
return get_conv_template("vicuna_v1.1") |
|
|
|
def raise_warning_for_old_weights(self, model): |
|
if isinstance(model, LlamaForCausalLM) and model.model.vocab_size > 32000: |
|
warnings.warn( |
|
"\nYou are probably using the old Vicuna-v0 model, " |
|
"which will generate unexpected results with the " |
|
"current fastchat.\nYou can try one of the following methods:\n" |
|
"1. Upgrade your weights to the new Vicuna-v1.3: https://github.com/lm-sys/FastChat#vicuna-weights.\n" |
|
"2. Use the old conversation template by `python3 -m fastchat.serve.cli --model-path /path/to/vicuna-v0 --conv-template one_shot`\n" |
|
"3. Downgrade fschat to fschat==0.1.10 (Not recommended).\n" |
|
) |
|
|
|
|
|
class AiroborosAdapter(BaseModelAdapter): |
|
"""The model adapter for jondurbin/airoboros-*""" |
|
|
|
def match(self, model_path: str): |
|
if re.search(r"airoboros|spicyboros", model_path, re.I): |
|
return True |
|
return False |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
if "-3." in model_path or "-3p" in model_path: |
|
return get_conv_template("airoboros_v3") |
|
if "spicyboros" in model_path or re.search(r"-(2\.[2-9]+)", model_path): |
|
return get_conv_template("airoboros_v2") |
|
return get_conv_template("airoboros_v1") |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
if "mpt" not in model_path.lower(): |
|
return super().load_model(model_path, from_pretrained_kwargs) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
max_seq_len=8192, |
|
**from_pretrained_kwargs, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, use_fast=True |
|
) |
|
return model, tokenizer |
|
|
|
|
|
class LongChatAdapter(BaseModelAdapter): |
|
"Model adapter for LongChat models (e.g., lmsys/longchat-7b-16k)." |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "longchat" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_path, revision=revision) |
|
replace_llama_with_condense(config.rope_scaling["factor"]) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=self.use_fast_tokenizer, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("vicuna_v1.1") |
|
|
|
|
|
class GoogleT5Adapter(BaseModelAdapter): |
|
"""The model adapter for google/Flan based models, such as Salesforce/codet5p-6b, lmsys/fastchat-t5-3b-v1.0, flan-t5-*, flan-ul2""" |
|
|
|
def match(self, model_path: str): |
|
return any( |
|
model_str in model_path.lower() |
|
for model_str in ["flan-", "fastchat-t5", "codet5p"] |
|
) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = T5Tokenizer.from_pretrained(model_path, revision=revision) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
|
|
class KoalaAdapter(BaseModelAdapter): |
|
"""The model adapter for Koala""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "koala" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("koala_v1") |
|
|
|
|
|
class AlpacaAdapter(BaseModelAdapter): |
|
"""The model adapter for Alpaca""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "alpaca" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("alpaca") |
|
|
|
|
|
class ChatGLMAdapter(BaseModelAdapter): |
|
"""The model adapter for THUDM/chatglm-6b, THUDM/chatglm2-6b""" |
|
|
|
def match(self, model_path: str): |
|
return "chatglm" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
if "chatglm3" in model_path.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
encode_special_tokens=True, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
model = AutoModel.from_pretrained( |
|
model_path, trust_remote_code=True, **from_pretrained_kwargs |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
model_path = model_path.lower() |
|
if "chatglm2" in model_path.lower(): |
|
return get_conv_template("chatglm2") |
|
if "chatglm3" in model_path.lower(): |
|
return get_conv_template("chatglm3") |
|
return get_conv_template("chatglm") |
|
|
|
|
|
class CodeGeexAdapter(BaseModelAdapter): |
|
"""The model adapter for THUDM/codegeex-6b, THUDM/codegeex2-6b""" |
|
|
|
def match(self, model_path: str): |
|
return "codegeex" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
model = AutoModel.from_pretrained( |
|
model_path, trust_remote_code=True, **from_pretrained_kwargs |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("codegeex") |
|
|
|
|
|
class DollyV2Adapter(BaseModelAdapter): |
|
"""The model adapter for databricks/dolly-v2-12b""" |
|
|
|
def match(self, model_path: str): |
|
return "dolly-v2" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, revision=revision) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
|
|
tokenizer.eos_token_id = 50277 |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("dolly_v2") |
|
|
|
|
|
class OasstPythiaAdapter(BaseModelAdapter): |
|
"""The model adapter for OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5""" |
|
|
|
def match(self, model_path: str): |
|
model_path = model_path.lower() |
|
return "oasst" in model_path and "pythia" in model_path |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("oasst_pythia") |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
|
|
class OasstLLaMAAdapter(BaseModelAdapter): |
|
"""The model adapter for OpenAssistant/oasst-sft-7-llama-30b""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
model_path = model_path.lower() |
|
if "openassistant-sft-7-llama-30b-hf" in model_path: |
|
return True |
|
return "oasst" in model_path and "pythia" not in model_path |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("oasst_llama") |
|
|
|
|
|
class OpenChat35Adapter(BaseModelAdapter): |
|
"""The model adapter for OpenChat 3.5 (e.g. openchat/openchat_3.5)""" |
|
|
|
def match(self, model_path: str): |
|
if "openchat" in model_path.lower() and "3.5" in model_path.lower(): |
|
return True |
|
elif "starling-lm" in model_path.lower(): |
|
return True |
|
return False |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("openchat_3.5") |
|
|
|
|
|
class TenyxChatAdapter(BaseModelAdapter): |
|
"""The model adapter for TenyxChat (e.g. tenyx/TenyxChat-7B-v1)""" |
|
|
|
def match(self, model_path: str): |
|
return "tenyxchat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("tenyxchat") |
|
|
|
|
|
class PythiaAdapter(BaseModelAdapter): |
|
"""The model adapter for any EleutherAI/pythia model""" |
|
|
|
def match(self, model_path: str): |
|
return "pythia" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
|
|
class StableLMAdapter(BaseModelAdapter): |
|
"""The model adapter for StabilityAI/stablelm-tuned-alpha-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "stablelm" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("stablelm") |
|
|
|
|
|
class MPTAdapter(BaseModelAdapter): |
|
"""The model adapter for MPT series (mosaicml/mpt-7b-chat, mosaicml/mpt-30b-chat)""" |
|
|
|
def match(self, model_path: str): |
|
model_path = model_path.lower() |
|
return "mpt" in model_path and not "airoboros" in model_path |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
max_seq_len=8192, |
|
**from_pretrained_kwargs, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
model_path = model_path.lower() |
|
if "mpt-7b-chat" in model_path: |
|
return get_conv_template("mpt-7b-chat") |
|
elif "mpt-30b-chat" in model_path: |
|
return get_conv_template("mpt-30b-chat") |
|
elif "mpt-30b-instruct" in model_path: |
|
return get_conv_template("mpt-30b-instruct") |
|
else: |
|
print( |
|
"Warning: Loading base MPT model with `zero_shot` conversation configuration. " |
|
"If this is not desired, inspect model configurations and names." |
|
) |
|
return get_conv_template("zero_shot") |
|
|
|
|
|
class BaizeAdapter(BaseModelAdapter): |
|
"""The model adapter for project-baize/baize-v2-7b""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "baize" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("baize") |
|
|
|
|
|
class RwkvAdapter(BaseModelAdapter): |
|
"""The model adapter for BlinkDL/RWKV-4-Raven""" |
|
|
|
def match(self, model_path: str): |
|
return "rwkv-4" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
from fastchat.model.rwkv_model import RwkvModel |
|
|
|
model = RwkvModel(model_path) |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"EleutherAI/pythia-160m", revision=revision |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("rwkv") |
|
|
|
|
|
class OpenBuddyAdapter(BaseModelAdapter): |
|
"""The model adapter for OpenBuddy/openbuddy-7b-v1.1-bf16-enc""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "openbuddy" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("openbuddy") |
|
|
|
|
|
class PhoenixAdapter(BaseModelAdapter): |
|
"""The model adapter for FreedomIntelligence/phoenix-inst-chat-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "phoenix" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("phoenix") |
|
|
|
|
|
class ReaLMAdapter(BaseModelAdapter): |
|
"""The model adapter for FreedomIntelligence/ReaLM-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "ReaLM" in model_path |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("ReaLM-7b-v1") |
|
|
|
|
|
class ChatGPTAdapter(BaseModelAdapter): |
|
"""The model adapter for ChatGPT""" |
|
|
|
def match(self, model_path: str): |
|
return model_path in OPENAI_MODEL_LIST |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("chatgpt") |
|
|
|
|
|
class AzureOpenAIAdapter(BaseModelAdapter): |
|
"""The model adapter for Azure OpenAI""" |
|
|
|
def match(self, model_path: str): |
|
return model_path in ("azure-gpt-35-turbo", "azure-gpt-4") |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("chatgpt") |
|
|
|
|
|
class PplxAIAdapter(BaseModelAdapter): |
|
"""The model adapter for Perplexity AI""" |
|
|
|
def match(self, model_path: str): |
|
return model_path in ( |
|
"pplx-7b-online", |
|
"pplx-70b-online", |
|
) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("pplxai") |
|
|
|
|
|
class ClaudeAdapter(BaseModelAdapter): |
|
"""The model adapter for Claude""" |
|
|
|
def match(self, model_path: str): |
|
return model_path in ANTHROPIC_MODEL_LIST |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("claude") |
|
|
|
|
|
class BardAdapter(BaseModelAdapter): |
|
"""The model adapter for Bard""" |
|
|
|
def match(self, model_path: str): |
|
return model_path == "bard" |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("bard") |
|
|
|
|
|
class PaLM2Adapter(BaseModelAdapter): |
|
"""The model adapter for PaLM2""" |
|
|
|
def match(self, model_path: str): |
|
return model_path == "palm-2" |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("bard") |
|
|
|
|
|
class GeminiAdapter(BaseModelAdapter): |
|
"""The model adapter for Gemini""" |
|
|
|
def match(self, model_path: str): |
|
return model_path in ["gemini-pro"] |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
raise NotImplementedError() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("bard") |
|
|
|
|
|
class BiLLaAdapter(BaseModelAdapter): |
|
"""The model adapter for Neutralzz/BiLLa-7B-SFT""" |
|
|
|
def match(self, model_path: str): |
|
return "billa" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("billa") |
|
|
|
|
|
class RedPajamaINCITEAdapter(BaseModelAdapter): |
|
"""The model adapter for togethercomputer/RedPajama-INCITE-7B-Chat""" |
|
|
|
def match(self, model_path: str): |
|
return "redpajama-incite" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, revision=revision) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("redpajama-incite") |
|
|
|
|
|
class H2OGPTAdapter(BaseModelAdapter): |
|
"""The model adapter for h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "h2ogpt" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("h2ogpt") |
|
|
|
|
|
class RobinAdapter(BaseModelAdapter): |
|
"""The model adapter for LMFlow/Full-Robin-7b-v2""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "robin" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("Robin") |
|
|
|
|
|
class SnoozyAdapter(BaseModelAdapter): |
|
"""The model adapter for nomic-ai/gpt4all-13b-snoozy""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
model_path = model_path.lower() |
|
return "gpt4all" in model_path and "snoozy" in model_path |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("snoozy") |
|
|
|
|
|
class WizardLMAdapter(BaseModelAdapter): |
|
"""The model adapter for WizardLM/WizardLM-13B-V1.0""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "wizardlm" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
model_path = model_path.lower() |
|
if "13b" in model_path or "30b" in model_path or "70b" in model_path: |
|
return get_conv_template("vicuna_v1.1") |
|
else: |
|
|
|
|
|
return get_conv_template("one_shot") |
|
|
|
|
|
class ManticoreAdapter(BaseModelAdapter): |
|
"""The model adapter for openaccess-ai-collective/manticore-13b-chat-pyg""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "manticore" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("manticore") |
|
|
|
|
|
class GuanacoAdapter(BaseModelAdapter): |
|
"""The model adapter for timdettmers/guanaco-33b-merged""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "guanaco" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=self.use_fast_tokenizer, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs |
|
) |
|
|
|
tokenizer.eos_token_id = model.config.eos_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("zero_shot") |
|
|
|
|
|
class ChangGPTAdapter(BaseModelAdapter): |
|
"""The model adapter for lcw99/polyglot-ko-12.8b-chang-instruct-chat""" |
|
|
|
def match(self, model_path: str): |
|
model_path = model_path.lower() |
|
return "polyglot" in model_path and "chang" in model_path |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("polyglot_changgpt") |
|
|
|
|
|
class CamelAdapter(BaseModelAdapter): |
|
"""The model adapter for camel-ai/CAMEL-13B-Combined-Data""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "camel" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("vicuna_v1.1") |
|
|
|
|
|
class TuluAdapter(BaseModelAdapter): |
|
"""The model adapter for allenai/tulu-30b""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "tulu" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("tulu") |
|
|
|
|
|
class FalconAdapter(BaseModelAdapter): |
|
"""The model adapter for tiiuae/falcon-40b""" |
|
|
|
def match(self, model_path: str): |
|
return "falcon" in model_path.lower() and "chat" not in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, revision=revision) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
|
|
|
|
tokenizer.pad_token_id = 9 |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("falcon") |
|
|
|
|
|
class FalconChatAdapter(BaseModelAdapter): |
|
def match(self, model_path: str): |
|
return "falcon" in model_path.lower() and "chat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("falcon-chat") |
|
|
|
|
|
class TigerBotAdapter(BaseModelAdapter): |
|
"""The model adapter for TigerResearch/tigerbot-7b-sft""" |
|
|
|
def match(self, model_path: str): |
|
return "tigerbot" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("tigerbot") |
|
|
|
|
|
class BaichuanAdapter(BaseModelAdapter): |
|
"""The model adapter for Baichuan models (e.g., baichuan-inc/Baichuan-7B)""" |
|
|
|
def match(self, model_path: str): |
|
return "baichuan" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
|
|
if "chat" in model_path.lower(): |
|
if "baichuan2" in model_path.lower(): |
|
return get_conv_template("baichuan2-chat") |
|
return get_conv_template("baichuan-chat") |
|
return get_conv_template("zero_shot") |
|
|
|
|
|
class XGenAdapter(BaseModelAdapter): |
|
"""The model adapter for Salesforce/xgen-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "xgen" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
model.config.eos_token_id = 50256 |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("xgen") |
|
|
|
|
|
class NousHermesAdapter(BaseModelAdapter): |
|
"""The model adapter for NousResearch/Nous-Hermes-13b""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "nous-hermes" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("alpaca") |
|
|
|
|
|
class InternLMChatAdapter(BaseModelAdapter): |
|
"""The model adapter for internlm/internlm-chat-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "internlm" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
model = model.eval() |
|
if "8k" in model_path.lower(): |
|
model.config.max_sequence_length = 8192 |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("internlm-chat") |
|
|
|
|
|
class StarChatAdapter(BaseModelAdapter): |
|
"""The model adapter for HuggingFaceH4/starchat-beta""" |
|
|
|
def match(self, model_path: str): |
|
return "starchat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("starchat") |
|
|
|
|
|
class MistralAdapter(BaseModelAdapter): |
|
"""The model adapter for Mistral AI models""" |
|
|
|
def match(self, model_path: str): |
|
return "mistral" in model_path.lower() or "mixtral" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("mistral") |
|
|
|
|
|
class Llama2Adapter(BaseModelAdapter): |
|
"""The model adapter for Llama-2 (e.g., meta-llama/Llama-2-7b-hf)""" |
|
|
|
def match(self, model_path: str): |
|
return "llama-2" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("llama-2") |
|
|
|
|
|
class CuteGPTAdapter(BaseModelAdapter): |
|
"""The model adapter for CuteGPT""" |
|
|
|
def match(self, model_path: str): |
|
return "cutegpt" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
tokenizer = LlamaTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs |
|
) |
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<end>") |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.eos_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("cutegpt") |
|
|
|
|
|
class OpenOrcaAdapter(BaseModelAdapter): |
|
"""Model adapter for Open-Orca models which may use different prompt templates |
|
- (e.g. Open-Orca/OpenOrcaxOpenChat-Preview2-13B, Open-Orca/Mistral-7B-OpenOrca) |
|
- `OpenOrcaxOpenChat-Preview2-13B` uses their "OpenChat Llama2 V1" prompt template. |
|
- [Open-Orca/OpenOrcaxOpenChat-Preview2-13B #Prompt Template](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B#prompt-template) |
|
- `Mistral-7B-OpenOrca` uses the [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) |
|
format, with <|im_start|> and <|im_end|> tokens added to support this. |
|
- [Open-Orca/Mistral-7B-OpenOrca #Prompt Template](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template) |
|
""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return ( |
|
"mistral-7b-openorca" in model_path.lower() |
|
or "openorca" in model_path.lower() |
|
) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=self.use_fast_tokenizer, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
).eval() |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
if "mistral-7b-openorca" in model_path.lower(): |
|
return get_conv_template("mistral-7b-openorca") |
|
return get_conv_template("open-orca") |
|
|
|
|
|
class DolphinAdapter(OpenOrcaAdapter): |
|
"""Model adapter for ehartford/dolphin-2.2.1-mistral-7b""" |
|
|
|
def match(self, model_path: str): |
|
return "dolphin" in model_path.lower() and "mistral" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("dolphin-2.2.1-mistral-7b") |
|
|
|
|
|
class Hermes2Adapter(BaseModelAdapter): |
|
"""Model adapter for teknium/OpenHermes-2.5-Mistral-7B and teknium/OpenHermes-2-Mistral-7B models""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return any( |
|
model_str in model_path.lower() |
|
for model_str in ["openhermes-2.5-mistral-7b", "openhermes-2-mistral-7b"] |
|
) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=self.use_fast_tokenizer, revision=revision |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
).eval() |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("OpenHermes-2.5-Mistral-7B") |
|
|
|
|
|
class NousHermes2MixtralAdapter(BaseModelAdapter): |
|
"""Model adapter for NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO model""" |
|
|
|
def match(self, model_path: str): |
|
return any( |
|
model_str in model_path.lower() |
|
for model_str in [ |
|
"nous-hermes-2-mixtral-8x7b-dpo", |
|
"nous-hermes-2-mixtral-8x7b-sft", |
|
] |
|
) |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("Nous-Hermes-2-Mixtral-8x7B-DPO") |
|
|
|
|
|
class WizardCoderAdapter(BaseModelAdapter): |
|
"""The model adapter for WizardCoder (e.g., WizardLM/WizardCoder-Python-34B-V1.0)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "wizardcoder" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
|
|
|
|
return get_conv_template("alpaca") |
|
|
|
|
|
class QwenChatAdapter(BaseModelAdapter): |
|
"""The model adapter for Qwen/Qwen-7B-Chat |
|
To run this model, you need to ensure additional flash attention installation: |
|
``` bash |
|
git clone https://github.com/Dao-AILab/flash-attention |
|
cd flash-attention && pip install . |
|
pip install csrc/layer_norm |
|
pip install csrc/rotary |
|
``` |
|
|
|
Since from 2.0, the following change happened |
|
- `flash_attn_unpadded_func` -> `flash_attn_varlen_func` |
|
- `flash_attn_unpadded_qkvpacked_func` -> `flash_attn_varlen_qkvpacked_func` |
|
- `flash_attn_unpadded_kvpacked_func` -> `flash_attn_varlen_kvpacked_func` |
|
You may need to revise the code in: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/modeling_qwen.py#L69 |
|
to from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func |
|
""" |
|
|
|
def match(self, model_path: str): |
|
return "qwen" in model_path.lower() |
|
|
|
def float_set(self, config, option): |
|
config.bf16 = False |
|
config.fp16 = False |
|
config.fp32 = False |
|
|
|
if option == "bf16": |
|
config.bf16 = True |
|
elif option == "fp16": |
|
config.fp16 = True |
|
elif option == "fp32": |
|
config.fp32 = True |
|
else: |
|
print("Invalid option. Please choose one from 'bf16', 'fp16' and 'fp32'.") |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
from transformers.generation import GenerationConfig |
|
|
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
config = AutoConfig.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
self.float_set(config, "fp16") |
|
generation_config = GenerationConfig.from_pretrained( |
|
model_path, trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
config=config, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
).eval() |
|
if hasattr(model.config, "use_dynamic_ntk") and model.config.use_dynamic_ntk: |
|
model.config.max_sequence_length = 16384 |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
tokenizer.eos_token_id = config.eos_token_id |
|
tokenizer.bos_token_id = config.bos_token_id |
|
tokenizer.pad_token_id = generation_config.pad_token_id |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.bos_token_id = tokenizer.bos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
|
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("qwen-7b-chat") |
|
|
|
|
|
class BGEAdapter(BaseModelAdapter): |
|
"""The model adapter for BGE (e.g., BAAI/bge-large-en-v1.5)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "bge" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModel.from_pretrained( |
|
model_path, |
|
**from_pretrained_kwargs, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
if hasattr(model.config, "max_position_embeddings") and hasattr( |
|
tokenizer, "model_max_length" |
|
): |
|
model.config.max_sequence_length = min( |
|
model.config.max_position_embeddings, tokenizer.model_max_length |
|
) |
|
model.use_cls_pooling = True |
|
model.eval() |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("one_shot") |
|
|
|
|
|
class E5Adapter(BaseModelAdapter): |
|
"""The model adapter for E5 (e.g., intfloat/e5-large-v2)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "e5-" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModel.from_pretrained( |
|
model_path, |
|
**from_pretrained_kwargs, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
if hasattr(model.config, "max_position_embeddings") and hasattr( |
|
tokenizer, "model_max_length" |
|
): |
|
model.config.max_sequence_length = min( |
|
model.config.max_position_embeddings, tokenizer.model_max_length |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("one_shot") |
|
|
|
|
|
class AquilaChatAdapter(BaseModelAdapter): |
|
"""The model adapter for BAAI/Aquila |
|
|
|
Now supports: |
|
- BAAI/AquilaChat-7B |
|
- BAAI/AquilaChat2-7B |
|
- BAAI/AquilaChat2-34B |
|
""" |
|
|
|
def match(self, model_path: str): |
|
return "aquila" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
model = model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, trust_remote_code=True, revision=revision |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
model_path = model_path.lower() |
|
|
|
if "aquilachat2" in model_path: |
|
if "16k" in model_path: |
|
return get_conv_template("aquila") |
|
elif "34b" in model_path: |
|
return get_conv_template("aquila-legacy") |
|
else: |
|
return get_conv_template("aquila-v1") |
|
else: |
|
return get_conv_template("aquila-chat") |
|
|
|
|
|
class Lamma2ChineseAdapter(BaseModelAdapter): |
|
"""The model adapter for FlagAlpha/LLama2-Chinese sft""" |
|
|
|
def match(self, model_path: str): |
|
return "llama2-chinese" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("llama2-chinese") |
|
|
|
|
|
class Lamma2ChineseAlpacaAdapter(BaseModelAdapter): |
|
"""The model adapter for ymcui/Chinese-LLaMA-Alpaca sft""" |
|
|
|
def match(self, model_path: str): |
|
return "chinese-alpaca" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("chinese-alpaca2") |
|
|
|
|
|
class VigogneAdapter(BaseModelAdapter): |
|
"""The model adapter for vigogne (e.g., bofenghuang/vigogne-2-7b-chat)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return bool(re.search(r"vigogne|vigostral", model_path, re.I)) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
use_fast=self.use_fast_tokenizer, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
).eval() |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
if "chat" in model_path.lower(): |
|
if "vigostral" in model_path.lower(): |
|
return get_conv_template("vigogne_chat_v3") |
|
return get_conv_template("vigogne_chat_v2") |
|
return get_conv_template("vigogne_instruct") |
|
|
|
|
|
class OpenLLaMaOpenInstructAdapter(BaseModelAdapter): |
|
"""The model adapter for OpenLLaMa-Open-Instruct (e.g., VMware/open-llama-7b-open-instruct)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return ( |
|
"open-llama" in model_path.lower() and "open-instruct" in model_path.lower() |
|
) |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, |
|
use_fast=self.use_fast_tokenizer, |
|
trust_remote_code=True, |
|
revision=revision, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
**from_pretrained_kwargs, |
|
).eval() |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("alpaca") |
|
|
|
|
|
class CodeLlamaAdapter(BaseModelAdapter): |
|
"""The model adapter for CodeLlama (e.g., codellama/CodeLlama-34b-hf)""" |
|
|
|
def match(self, model_path: str): |
|
return "codellama" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("llama-2") |
|
|
|
|
|
class StableVicunaAdapter(BaseModelAdapter): |
|
"""The model adapter for StableVicuna""" |
|
|
|
def match(self, model_path: str): |
|
return "stable-vicuna" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
model.config.eos_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("stable-vicuna") |
|
|
|
|
|
class PhindCodeLlamaAdapter(CodeLlamaAdapter): |
|
"""The model adapter for Phind-CodeLlama (e.g., Phind/Phind-CodeLlama-34B-v2)""" |
|
|
|
def match(self, model_path: str): |
|
return "phind-codellama-" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("phind") |
|
|
|
|
|
class Llama2ChangAdapter(Llama2Adapter): |
|
"""The model adapter for Llama2-ko-chang (e.g., lcw99/llama2-ko-chang-instruct-chat)""" |
|
|
|
def match(self, model_path: str): |
|
return "llama2-ko-chang" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("polyglot_changgpt") |
|
|
|
|
|
class ZephyrAdapter(BaseModelAdapter): |
|
"""The model adapter for Zephyr (e.g. HuggingFaceH4/zephyr-7b-alpha)""" |
|
|
|
def match(self, model_path: str): |
|
return "zephyr" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("zephyr") |
|
|
|
|
|
class NotusAdapter(BaseModelAdapter): |
|
"""The model adapter for Notus (e.g. argilla/notus-7b-v1)""" |
|
|
|
def match(self, model_path: str): |
|
return "notus" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("zephyr") |
|
|
|
|
|
class CatPPTAdapter(BaseModelAdapter): |
|
"""The model adapter for CatPPT (e.g. rishiraj/CatPPT)""" |
|
|
|
def match(self, model_path: str): |
|
return "catppt" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("catppt") |
|
|
|
|
|
class TinyLlamaAdapter(BaseModelAdapter): |
|
"""The model adapter for TinyLlama (e.g. TinyLlama/TinyLlama-1.1B-Chat-v1.0)""" |
|
|
|
def match(self, model_path: str): |
|
return "tinyllama" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("TinyLlama") |
|
|
|
|
|
class XwinLMAdapter(BaseModelAdapter): |
|
"""The model adapter for Xwin-LM V0.1 and V0.2 series of models(e.g., Xwin-LM/Xwin-LM-70B-V0.1)""" |
|
|
|
|
|
|
|
def match(self, model_path: str): |
|
return "xwin-lm" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("vicuna_v1.1") |
|
|
|
|
|
class LemurAdapter(BaseModelAdapter): |
|
"""The model adapter for OpenLemur/lemur-70b-chat-v1""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "lemur-70b-chat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("lemur-70b-chat") |
|
|
|
|
|
class PygmalionAdapter(BaseModelAdapter): |
|
"""The model adapter for Pygmalion/Metharme series of models(e.g., PygmalionAI/mythalion-13b)""" |
|
|
|
|
|
|
|
def match(self, model_path: str): |
|
return bool( |
|
re.search(r"pygmalion|mythalion|metharme", model_path.lower(), re.I) |
|
) |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("metharme") |
|
|
|
|
|
class XdanAdapter(BaseModelAdapter): |
|
"""The model adapter for xDAN-AI (e.g. xDAN-AI/xDAN-L1-Chat-RL-v1)""" |
|
|
|
def match(self, model_path: str): |
|
return "xdan" in model_path.lower() and "v1" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("xdan-v1") |
|
|
|
|
|
class MicrosoftOrcaAdapter(BaseModelAdapter): |
|
"""The model adapter for Microsoft/Orca-2 series of models (e.g. Microsoft/Orca-2-7b, Microsoft/Orca-2-13b)""" |
|
|
|
use_fast_tokenizer = False |
|
|
|
def match(self, model_path: str): |
|
return "orca-2" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("orca-2") |
|
|
|
|
|
class YiAdapter(BaseModelAdapter): |
|
"""The model adapter for Yi models""" |
|
|
|
def match(self, model_path: str): |
|
return "yi-" in model_path.lower() and "chat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("Yi-34b-chat") |
|
|
|
|
|
class DeepseekCoderAdapter(BaseModelAdapter): |
|
"""The model adapter for deepseek-ai's coder models""" |
|
|
|
def match(self, model_path: str): |
|
return "deepseek-coder" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("deepseek-coder") |
|
|
|
|
|
class DeepseekChatAdapter(BaseModelAdapter): |
|
"""The model adapter for deepseek-ai's chat models""" |
|
|
|
|
|
|
|
def match(self, model_path: str): |
|
return "deepseek-llm" in model_path.lower() and "chat" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("deepseek-chat") |
|
|
|
|
|
class Yuan2Adapter(BaseModelAdapter): |
|
"""The model adapter for Yuan2.0""" |
|
|
|
def match(self, model_path: str): |
|
return "yuan2" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
revision = from_pretrained_kwargs.get("revision", "main") |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained( |
|
model_path, |
|
add_eos_token=False, |
|
add_bos_token=False, |
|
eos_token="<eod>", |
|
eod_token="<eod>", |
|
sep_token="<sep>", |
|
revision=revision, |
|
) |
|
tokenizer.add_tokens( |
|
[ |
|
"<sep>", |
|
"<pad>", |
|
"<mask>", |
|
"<predict>", |
|
"<FIM_SUFFIX>", |
|
"<FIM_PREFIX>", |
|
"<FIM_MIDDLE>", |
|
"<commit_before>", |
|
"<commit_msg>", |
|
"<commit_after>", |
|
"<jupyter_start>", |
|
"<jupyter_text>", |
|
"<jupyter_code>", |
|
"<jupyter_output>", |
|
"<empty_output>", |
|
], |
|
special_tokens=True, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
|
|
trust_remote_code=True, |
|
**from_pretrained_kwargs, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("yuan2") |
|
|
|
|
|
class MetaMathAdapter(BaseModelAdapter): |
|
"""The model adapter for MetaMath models""" |
|
|
|
def match(self, model_path: str): |
|
return "metamath" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("metamath") |
|
|
|
|
|
class BagelAdapter(BaseModelAdapter): |
|
"""Model adapter for jondurbin/bagel-* models""" |
|
|
|
def match(self, model_path: str): |
|
return "bagel" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("airoboros_v3") |
|
|
|
|
|
class SolarAdapter(BaseModelAdapter): |
|
"""The model adapter for upstage/SOLAR-10.7B-Instruct-v1.0""" |
|
|
|
def match(self, model_path: str): |
|
return "solar-" in model_path.lower() and "instruct" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("solar") |
|
|
|
|
|
class LlavaAdapter(BaseModelAdapter): |
|
"""The model adapter for liuhaotian/llava-v1.5 series of models""" |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
|
|
pass |
|
|
|
def match(self, model_path: str): |
|
return "llava" in model_path.lower() |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("vicuna_v1.1") |
|
|
|
|
|
class YuanAdapter(BaseModelAdapter): |
|
"""The model adapter for Yuan""" |
|
|
|
def match(self, model_path: str): |
|
return "yuan" in model_path.lower() |
|
|
|
def load_model(self, model_path: str, from_pretrained_kwargs: dict): |
|
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs) |
|
tokenizer.add_tokens( |
|
[ |
|
"<sep>", |
|
"<pad>", |
|
"<mask>", |
|
"<predict>", |
|
"<FIM_SUFFIX>", |
|
"<FIM_PREFIX>", |
|
"<FIM_MIDDLE>", |
|
"<commit_before>", |
|
"<commit_msg>", |
|
"<commit_after>", |
|
"<jupyter_start>", |
|
"<jupyter_text>", |
|
"<jupyter_code>", |
|
"<jupyter_output>", |
|
"<empty_output>", |
|
], |
|
special_tokens=True, |
|
) |
|
return model, tokenizer |
|
|
|
def get_default_conv_template(self, model_path: str) -> Conversation: |
|
return get_conv_template("yuan") |
|
|
|
|
|
|
|
|
|
register_model_adapter(PeftModelAdapter) |
|
register_model_adapter(StableVicunaAdapter) |
|
register_model_adapter(VicunaAdapter) |
|
register_model_adapter(AiroborosAdapter) |
|
register_model_adapter(LongChatAdapter) |
|
register_model_adapter(GoogleT5Adapter) |
|
register_model_adapter(KoalaAdapter) |
|
register_model_adapter(AlpacaAdapter) |
|
register_model_adapter(ChatGLMAdapter) |
|
register_model_adapter(CodeGeexAdapter) |
|
register_model_adapter(DollyV2Adapter) |
|
register_model_adapter(OasstPythiaAdapter) |
|
register_model_adapter(OasstLLaMAAdapter) |
|
register_model_adapter(OpenChat35Adapter) |
|
register_model_adapter(TenyxChatAdapter) |
|
register_model_adapter(StableLMAdapter) |
|
register_model_adapter(BaizeAdapter) |
|
register_model_adapter(RwkvAdapter) |
|
register_model_adapter(OpenBuddyAdapter) |
|
register_model_adapter(PhoenixAdapter) |
|
register_model_adapter(BardAdapter) |
|
register_model_adapter(PaLM2Adapter) |
|
register_model_adapter(GeminiAdapter) |
|
register_model_adapter(ChatGPTAdapter) |
|
register_model_adapter(AzureOpenAIAdapter) |
|
register_model_adapter(ClaudeAdapter) |
|
register_model_adapter(MPTAdapter) |
|
register_model_adapter(BiLLaAdapter) |
|
register_model_adapter(RedPajamaINCITEAdapter) |
|
register_model_adapter(H2OGPTAdapter) |
|
register_model_adapter(RobinAdapter) |
|
register_model_adapter(SnoozyAdapter) |
|
register_model_adapter(WizardLMAdapter) |
|
register_model_adapter(ManticoreAdapter) |
|
register_model_adapter(GuanacoAdapter) |
|
register_model_adapter(CamelAdapter) |
|
register_model_adapter(ChangGPTAdapter) |
|
register_model_adapter(TuluAdapter) |
|
register_model_adapter(FalconChatAdapter) |
|
register_model_adapter(FalconAdapter) |
|
register_model_adapter(TigerBotAdapter) |
|
register_model_adapter(BaichuanAdapter) |
|
register_model_adapter(XGenAdapter) |
|
register_model_adapter(PythiaAdapter) |
|
register_model_adapter(InternLMChatAdapter) |
|
register_model_adapter(StarChatAdapter) |
|
register_model_adapter(Llama2Adapter) |
|
register_model_adapter(CuteGPTAdapter) |
|
register_model_adapter(OpenOrcaAdapter) |
|
register_model_adapter(DolphinAdapter) |
|
register_model_adapter(Hermes2Adapter) |
|
register_model_adapter(NousHermes2MixtralAdapter) |
|
register_model_adapter(NousHermesAdapter) |
|
register_model_adapter(MistralAdapter) |
|
register_model_adapter(WizardCoderAdapter) |
|
register_model_adapter(QwenChatAdapter) |
|
register_model_adapter(AquilaChatAdapter) |
|
register_model_adapter(BGEAdapter) |
|
register_model_adapter(E5Adapter) |
|
register_model_adapter(Lamma2ChineseAdapter) |
|
register_model_adapter(Lamma2ChineseAlpacaAdapter) |
|
register_model_adapter(VigogneAdapter) |
|
register_model_adapter(OpenLLaMaOpenInstructAdapter) |
|
register_model_adapter(ReaLMAdapter) |
|
register_model_adapter(PhindCodeLlamaAdapter) |
|
register_model_adapter(CodeLlamaAdapter) |
|
register_model_adapter(Llama2ChangAdapter) |
|
register_model_adapter(ZephyrAdapter) |
|
register_model_adapter(NotusAdapter) |
|
register_model_adapter(CatPPTAdapter) |
|
register_model_adapter(TinyLlamaAdapter) |
|
register_model_adapter(XwinLMAdapter) |
|
register_model_adapter(LemurAdapter) |
|
register_model_adapter(PygmalionAdapter) |
|
register_model_adapter(MicrosoftOrcaAdapter) |
|
register_model_adapter(XdanAdapter) |
|
register_model_adapter(YiAdapter) |
|
register_model_adapter(PplxAIAdapter) |
|
register_model_adapter(DeepseekCoderAdapter) |
|
register_model_adapter(DeepseekChatAdapter) |
|
register_model_adapter(Yuan2Adapter) |
|
register_model_adapter(MetaMathAdapter) |
|
register_model_adapter(BagelAdapter) |
|
register_model_adapter(SolarAdapter) |
|
register_model_adapter(LlavaAdapter) |
|
register_model_adapter(YuanAdapter) |
|
|
|
|
|
register_model_adapter(BaseModelAdapter) |
|
|