// Copyright (C) 2007 Davis E. King (davis@dlib.net) | |
// License: Boost Software License See LICENSE.txt for the full license. | |
namespace dlib | |
{ | |
// ---------------------------------------------------------------------------------------- | |
class assignment : public enumerable<map_pair<unsigned long, unsigned long> > | |
{ | |
/*! | |
INITIAL VALUE | |
- size() == 0 | |
ENUMERATION ORDER | |
The enumerator will iterate over the entries in the assignment in | |
ascending order according to index values. (i.e. the elements are | |
enumerated in sorted order according to the value of their keys) | |
WHAT THIS OBJECT REPRESENTS | |
This object models an assignment of random variables to particular values. | |
It is used with the joint_probability_table and conditional_probability_table | |
objects to represent assignments of various random variables to actual values. | |
So for example, if you had a joint_probability_table that represented the | |
following table: | |
P(A = 0, B = 0) = 0.2 | |
P(A = 0, B = 1) = 0.3 | |
P(A = 1, B = 0) = 0.1 | |
P(A = 1, B = 1) = 0.4 | |
Also lets define an enum so we have concrete index numbers for A and B | |
enum { A = 0, B = 1}; | |
Then you could query the value of P(A=1, B=0) as follows: | |
assignment a; | |
a.set(A, 1); | |
a.set(B, 0); | |
// and now it is the case that: | |
table.probability(a) == 0.1 | |
a[A] == 1 | |
a[B] == 0 | |
Also note that when enumerating the elements of an assignment object | |
the key() refers to the index and the value() refers to the value at that | |
index. For example: | |
// assume a is an assignment object | |
a.reset(); | |
while (a.move_next()) | |
{ | |
// in this loop it is always the case that: | |
// a[a.element().key()] == a.element().value() | |
} | |
!*/ | |
public: | |
assignment( | |
); | |
/*! | |
ensures | |
- this object is properly initialized | |
!*/ | |
assignment( | |
const assignment& a | |
); | |
/*! | |
ensures | |
- #*this is a copy of a | |
!*/ | |
assignment& operator = ( | |
const assignment& rhs | |
); | |
/*! | |
ensures | |
- #*this is a copy of rhs | |
- returns *this | |
!*/ | |
void clear( | |
); | |
/*! | |
ensures | |
- this object has been returned to its initial value | |
!*/ | |
bool operator < ( | |
const assignment& item | |
) const; | |
/*! | |
ensures | |
- The exact functioning of this operator is undefined. The only guarantee | |
is that it establishes a total ordering on all possible assignment objects. | |
In other words, this operator makes it so that you can use assignment | |
objects in the associative containers but otherwise isn't of any | |
particular use. | |
!*/ | |
bool has_index ( | |
unsigned long idx | |
) const; | |
/*! | |
ensures | |
- if (this assignment object has an entry for index idx) then | |
- returns true | |
- else | |
- returns false | |
!*/ | |
void add ( | |
unsigned long idx, | |
unsigned long value = 0 | |
); | |
/*! | |
requires | |
- has_index(idx) == false | |
ensures | |
- #has_index(idx) == true | |
- #(*this)[idx] == value | |
!*/ | |
void remove ( | |
unsigned long idx | |
); | |
/*! | |
requires | |
- has_index(idx) == true | |
ensures | |
- #has_index(idx) == false | |
!*/ | |
unsigned long& operator[] ( | |
const long idx | |
); | |
/*! | |
requires | |
- has_index(idx) == true | |
ensures | |
- returns a reference to the value associated with index idx | |
!*/ | |
const unsigned long& operator[] ( | |
const long idx | |
) const; | |
/*! | |
requires | |
- has_index(idx) == true | |
ensures | |
- returns a const reference to the value associated with index idx | |
!*/ | |
void swap ( | |
assignment& item | |
); | |
/*! | |
ensures | |
- swaps *this and item | |
!*/ | |
}; | |
inline void swap ( | |
assignment& a, | |
assignment& b | |
) { a.swap(b); } | |
/*! | |
provides a global swap | |
!*/ | |
std::ostream& operator << ( | |
std::ostream& out, | |
const assignment& a | |
); | |
/*! | |
ensures | |
- writes a to the given output stream in the following format: | |
(index1:value1, index2:value2, ..., indexN:valueN) | |
!*/ | |
void serialize ( | |
const assignment& item, | |
std::ostream& out | |
); | |
/*! | |
provides serialization support | |
!*/ | |
void deserialize ( | |
assignment& item, | |
std::istream& in | |
); | |
/*! | |
provides deserialization support | |
!*/ | |
// ------------------------------------------------------------------------ | |
class joint_probability_table : public enumerable<map_pair<assignment, double> > | |
{ | |
/*! | |
INITIAL VALUE | |
- size() == 0 | |
ENUMERATION ORDER | |
The enumerator will iterate over the entries in the probability table | |
in no particular order but they will all be visited. | |
WHAT THIS OBJECT REPRESENTS | |
This object models a joint probability table. That is, it models | |
the function p(X). So this object models the probability of a particular | |
set of variables (referred to as X). | |
!*/ | |
public: | |
joint_probability_table( | |
); | |
/*! | |
ensures | |
- this object is properly initialized | |
!*/ | |
joint_probability_table ( | |
const joint_probability_table& t | |
); | |
/*! | |
ensures | |
- this object is a copy of t | |
!*/ | |
void clear( | |
); | |
/*! | |
ensures | |
- this object has its initial value | |
!*/ | |
joint_probability_table& operator= ( | |
const joint_probability_table& rhs | |
); | |
/*! | |
ensures | |
- this object is a copy of rhs | |
- returns a reference to *this | |
!*/ | |
bool has_entry_for ( | |
const assignment& a | |
) const; | |
/*! | |
ensures | |
- if (this joint_probability_table has an entry for p(X = a)) then | |
- returns true | |
- else | |
- returns false | |
!*/ | |
void set_probability ( | |
const assignment& a, | |
double p | |
); | |
/*! | |
requires | |
- 0 <= p <= 1 | |
ensures | |
- if (has_entry_for(a) == false) then | |
- #size() == size() + 1 | |
- #probability(a) == p | |
- #has_entry_for(a) == true | |
!*/ | |
void add_probability ( | |
const assignment& a, | |
double p | |
); | |
/*! | |
requires | |
- 0 <= p <= 1 | |
ensures | |
- if (has_entry_for(a) == false) then | |
- #size() == size() + 1 | |
- #probability(a) == p | |
- else | |
- #probability(a) == min(probability(a) + p, 1.0) | |
(i.e. does a saturating add) | |
- #has_entry_for(a) == true | |
!*/ | |
const double probability ( | |
const assignment& a | |
) const; | |
/*! | |
ensures | |
- returns the probability p(X == a) | |
!*/ | |
template < | |
typename T | |
> | |
void marginalize ( | |
const T& vars, | |
joint_probability_table& output_table | |
) const; | |
/*! | |
requires | |
- T is an implementation of set/set_kernel_abstract.h | |
ensures | |
- marginalizes *this by summing over all variables not in vars. The | |
result is stored in output_table. | |
!*/ | |
void marginalize ( | |
const unsigned long var, | |
joint_probability_table& output_table | |
) const; | |
/*! | |
ensures | |
- is identical to calling the above marginalize() function with a set | |
that contains only var. Or in other words, performs a marginalization | |
with just one variable var. So that output_table will contain a table giving | |
the marginal probability of var all by itself. | |
!*/ | |
void normalize ( | |
); | |
/*! | |
ensures | |
- let sum == the sum of all the probabilities in this table | |
- after normalize() has finished it will be the case that the sum of all | |
the entries in this table is 1.0. This is accomplished by dividing all | |
the entries by the sum described above. | |
!*/ | |
void swap ( | |
joint_probability_table& item | |
); | |
/*! | |
ensures | |
- swaps *this and item | |
!*/ | |
}; | |
inline void swap ( | |
joint_probability_table& a, | |
joint_probability_table& b | |
) { a.swap(b); } | |
/*! | |
provides a global swap | |
!*/ | |
void serialize ( | |
const joint_probability_table& item, | |
std::ostream& out | |
); | |
/*! | |
provides serialization support | |
!*/ | |
void deserialize ( | |
joint_probability_table& item, | |
std::istream& in | |
); | |
/*! | |
provides deserialization support | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
class conditional_probability_table : noncopyable | |
{ | |
/*! | |
INITIAL VALUE | |
- num_values() == 0 | |
- has_value_for(x, y) == false for all values of x and y | |
WHAT THIS OBJECT REPRESENTS | |
This object models a conditional probability table. That is, it models | |
the function p( X | parents). So this object models the conditional | |
probability of a particular variable (referred to as X) given another set | |
of variables (referred to as parents). | |
!*/ | |
public: | |
conditional_probability_table( | |
); | |
/*! | |
ensures | |
- this object is properly initialized | |
!*/ | |
void clear( | |
); | |
/*! | |
ensures | |
- this object has its initial value | |
!*/ | |
void empty_table ( | |
); | |
/*! | |
ensures | |
- for all possible v and p: | |
- #has_entry_for(v,p) == false | |
(i.e. this function clears out the table when you call it but doesn't | |
change the value of num_values()) | |
!*/ | |
void set_num_values ( | |
unsigned long num | |
); | |
/*! | |
ensures | |
- #num_values() == num | |
- for all possible v and p: | |
- #has_entry_for(v,p) == false | |
(i.e. this function clears out the table when you call it) | |
!*/ | |
unsigned long num_values ( | |
) const; | |
/*! | |
ensures | |
- This object models the probability table p(X | parents). This | |
function returns the number of values X can take on. | |
!*/ | |
bool has_entry_for ( | |
unsigned long value, | |
const assignment& ps | |
) const; | |
/*! | |
ensures | |
- if (this conditional_probability_table has an entry for p(X = value, parents = ps)) then | |
- returns true | |
- else | |
- returns false | |
!*/ | |
void set_probability ( | |
unsigned long value, | |
const assignment& ps, | |
double p | |
); | |
/*! | |
requires | |
- value < num_values() | |
- 0 <= p <= 1 | |
ensures | |
- #probability(ps, value) == p | |
- #has_entry_for(value, ps) == true | |
!*/ | |
double probability( | |
unsigned long value, | |
const assignment& ps | |
) const; | |
/*! | |
requires | |
- value < num_values() | |
- has_entry_for(value, ps) == true | |
ensures | |
- returns the probability p( X = value | parents = ps). | |
!*/ | |
void swap ( | |
conditional_probability_table& item | |
); | |
/*! | |
ensures | |
- swaps *this and item | |
!*/ | |
}; | |
inline void swap ( | |
conditional_probability_table& a, | |
conditional_probability_table& b | |
) { a.swap(b); } | |
/*! | |
provides a global swap | |
!*/ | |
void serialize ( | |
const conditional_probability_table& item, | |
std::ostream& out | |
); | |
/*! | |
provides serialization support | |
!*/ | |
void deserialize ( | |
conditional_probability_table& item, | |
std::istream& in | |
); | |
/*! | |
provides deserialization support | |
!*/ | |
// ------------------------------------------------------------------------ | |
// ------------------------------------------------------------------------ | |
// ------------------------------------------------------------------------ | |
class bayes_node : noncopyable | |
{ | |
/*! | |
INITIAL VALUE | |
- is_evidence() == false | |
- value() == 0 | |
- table().num_values() == 0 | |
WHAT THIS OBJECT REPRESENTS | |
This object represents a node in a bayesian network. It is | |
intended to be used inside the dlib::directed_graph object to | |
represent bayesian networks. | |
!*/ | |
public: | |
bayes_node ( | |
); | |
/*! | |
ensures | |
- this object is properly initialized | |
!*/ | |
unsigned long value ( | |
) const; | |
/*! | |
ensures | |
- returns the current value of this node | |
!*/ | |
void set_value ( | |
unsigned long new_value | |
); | |
/*! | |
requires | |
- new_value < table().num_values() | |
ensures | |
- #value() == new_value | |
!*/ | |
conditional_probability_table& table ( | |
); | |
/*! | |
ensures | |
- returns a reference to the conditional_probability_table associated with this node | |
!*/ | |
const conditional_probability_table& table ( | |
) const; | |
/*! | |
ensures | |
- returns a const reference to the conditional_probability_table associated with this | |
node. | |
!*/ | |
bool is_evidence ( | |
) const; | |
/*! | |
ensures | |
- if (this is an evidence node) then | |
- returns true | |
- else | |
- returns false | |
!*/ | |
void set_as_nonevidence ( | |
); | |
/*! | |
ensures | |
- #is_evidence() == false | |
!*/ | |
void set_as_evidence ( | |
); | |
/*! | |
ensures | |
- #is_evidence() == true | |
!*/ | |
void swap ( | |
bayes_node& item | |
); | |
/*! | |
ensures | |
- swaps *this and item | |
!*/ | |
}; | |
inline void swap ( | |
bayes_node& a, | |
bayes_node& b | |
) { a.swap(b); } | |
/*! | |
provides a global swap | |
!*/ | |
void serialize ( | |
const bayes_node& item, | |
std::ostream& out | |
); | |
/*! | |
provides serialization support | |
!*/ | |
void deserialize ( | |
bayes_node& item, | |
std::istream& in | |
); | |
/*! | |
provides deserialization support | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
// ---------------------------------------------------------------------------------------- | |
// ---------------------------------------------------------------------------------------- | |
/* | |
The following group of functions are convenience functions for manipulating | |
bayes_node objects while they are inside a directed_graph. These functions | |
also have additional requires clauses that, in debug mode, will protect you | |
from attempts to manipulate a bayesian network in an inappropriate way. | |
*/ | |
namespace bayes_node_utils | |
{ | |
template < | |
typename T | |
> | |
void set_node_value ( | |
T& bn, | |
unsigned long n, | |
unsigned long val | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
- val < node_num_values(bn, n) | |
ensures | |
- #bn.node(n).data.value() = val | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
unsigned long node_value ( | |
const T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- returns bn.node(n).data.value() | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
bool node_is_evidence ( | |
const T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- returns bn.node(n).data.is_evidence() | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
void set_node_as_evidence ( | |
T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- executes: bn.node(n).data.set_as_evidence() | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
void set_node_as_nonevidence ( | |
T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- executes: bn.node(n).data.set_as_nonevidence() | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
void set_node_num_values ( | |
T& bn, | |
unsigned long n, | |
unsigned long num | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- #bn.node(n).data.table().num_values() == num | |
(i.e. sets the number of different values this node can take) | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
unsigned long node_num_values ( | |
const T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- returns bn.node(n).data.table().num_values() | |
(i.e. returns the number of different values this node can take) | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
const double node_probability ( | |
const T& bn, | |
unsigned long n, | |
unsigned long value, | |
const assignment& parents | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
- value < node_num_values(bn,n) | |
- parents.size() == bn.node(n).number_of_parents() | |
- if (parents.has_index(x)) then | |
- bn.has_edge(x, n) | |
- parents[x] < node_num_values(bn,x) | |
ensures | |
- returns bn.node(n).data.table().probability(value, parents) | |
(i.e. returns the probability of node n having the given value when | |
its parents have the given assignment) | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template < | |
typename T | |
> | |
const double set_node_probability ( | |
const T& bn, | |
unsigned long n, | |
unsigned long value, | |
const assignment& parents, | |
double p | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
- value < node_num_values(bn,n) | |
- 0 <= p <= 1 | |
- parents.size() == bn.node(n).number_of_parents() | |
- if (parents.has_index(x)) then | |
- bn.has_edge(x, n) | |
- parents[x] < node_num_values(bn,x) | |
ensures | |
- #bn.node(n).data.table().probability(value, parents) == p | |
(i.e. sets the probability of node n having the given value when | |
its parents have the given assignment to the probability p) | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template <typename T> | |
const assignment node_first_parent_assignment ( | |
const T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- returns an assignment A such that: | |
- A.size() == bn.node(n).number_of_parents() | |
- if (P is a parent of bn.node(n)) then | |
- A.has_index(P) | |
- A[P] == 0 | |
- I.e. this function returns an assignment that contains all | |
the parents of the given node. Also, all the values of each | |
parent in the assignment is set to zero. | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template <typename T> | |
bool node_next_parent_assignment ( | |
const T& bn, | |
unsigned long n, | |
assignment& A | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
- A.size() == bn.node(n).number_of_parents() | |
- if (A.has_index(x)) then | |
- bn.has_edge(x, n) | |
- A[x] < node_num_values(bn,x) | |
ensures | |
- The behavior of this function is defined by the following code: | |
assignment a(node_first_parent_assignment(bn,n); | |
do { | |
// this loop loops over all possible parent assignments | |
// of the node bn.node(n). Each time through the loop variable a | |
// will be the next assignment. | |
} while (node_next_parent_assignment(bn,n,a)) | |
!*/ | |
// ------------------------------------------------------------------------------------ | |
template <typename T> | |
bool node_cpt_filled_out ( | |
const T& bn, | |
unsigned long n | |
); | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
- n < bn.number_of_nodes() | |
ensures | |
- if (the conditional_probability_table bn.node(n).data.table() is | |
fully filled out for this node) then | |
- returns true | |
- This means that each parent assignment for the given node | |
along with all possible values of this node shows up in the | |
table. | |
- It also means that all the probabilities conditioned on the | |
same parent assignment sum to 1.0 | |
- else | |
- returns false | |
!*/ | |
} | |
// ---------------------------------------------------------------------------------------- | |
// ---------------------------------------------------------------------------------------- | |
// ---------------------------------------------------------------------------------------- | |
class bayesian_network_gibbs_sampler : noncopyable | |
{ | |
/*! | |
INITIAL VALUE | |
This object has no state | |
WHAT THIS OBJECT REPRESENTS | |
This object performs Markov Chain Monte Carlo sampling of a bayesian | |
network using the Gibbs sampling technique. | |
Note that this object is limited to only bayesian networks that | |
don't contain deterministic nodes. That is, incorrect results may | |
be computed if this object is used when the bayesian network contains | |
any nodes that have a probability of 1 in their conditional probability | |
tables for any event. So don't use this object for networks with | |
deterministic nodes. | |
!*/ | |
public: | |
bayesian_network_gibbs_sampler ( | |
); | |
/*! | |
ensures | |
- this object is properly initialized | |
!*/ | |
template < | |
typename T | |
> | |
void sample_graph ( | |
T& bn | |
) | |
/*! | |
requires | |
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- T::type == bayes_node | |
ensures | |
- modifies randomly (via the Gibbs sampling technique) samples all the nodes | |
in the network and updates their values with the newly sampled values | |
!*/ | |
}; | |
// ---------------------------------------------------------------------------------------- | |
class bayesian_network_join_tree : noncopyable | |
{ | |
/*! | |
WHAT THIS OBJECT REPRESENTS | |
This object represents an implementation of the join tree algorithm | |
for inference in bayesian networks. It doesn't have any mutable state. | |
To you use you just give it a directed_graph that contains a bayesian | |
network and a graph object that contains that networks corresponding | |
join tree. Then you may query this object to determine the probabilities | |
of any variables in the original bayesian network. | |
!*/ | |
public: | |
template < | |
typename bn_type, | |
typename join_tree_type | |
> | |
bayesian_network_join_tree ( | |
const bn_type& bn, | |
const join_tree_type& join_tree | |
); | |
/*! | |
requires | |
- bn_type is an implementation of directed_graph/directed_graph_kernel_abstract.h | |
- bn_type::type == bayes_node | |
- join_tree_type is an implementation of graph/graph_kernel_abstract.h | |
- join_tree_type::type is an implementation of set/set_compare_abstract.h and | |
this set type contains unsigned long objects. | |
- join_tree_type::edge_type is an implementation of set/set_compare_abstract.h and | |
this set type contains unsigned long objects. | |
- is_join_tree(bn, join_tree) == true | |
- bn == a valid bayesian network with all its conditional probability tables | |
filled out | |
- for all valid n: | |
- node_cpt_filled_out(bn,n) == true | |
- graph_contains_length_one_cycle(bn) == false | |
- graph_is_connected(bn) == true | |
- bn.number_of_nodes() > 0 | |
ensures | |
- this object is properly initialized | |
!*/ | |
unsigned long number_of_nodes ( | |
) const; | |
/*! | |
ensures | |
- returns the number of nodes in the bayesian network that this | |
object was instantiated from. | |
!*/ | |
const matrix<double,1> probability( | |
unsigned long idx | |
) const; | |
/*! | |
requires | |
- idx < number_of_nodes() | |
ensures | |
- returns the probability distribution for the node with index idx that was in the bayesian | |
network that *this was instantiated from. Let D represent this distribution, then: | |
- D.nc() == the number of values the node idx ranges over | |
- D.nr() == 1 | |
- D(i) == the probability of node idx taking on the value i | |
!*/ | |
void swap ( | |
bayesian_network_join_tree& item | |
); | |
/*! | |
ensures | |
- swaps *this with item | |
!*/ | |
}; | |
inline void swap ( | |
bayesian_network_join_tree& a, | |
bayesian_network_join_tree& b | |
) { a.swap(b); } | |
/*! | |
provides a global swap | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
} | |