AudioDeNoiseAPI / pipeline.py
arnavkumar24
Addon
89040ed
raw
history blame
2.11 kB
import yaml
from typing import List
import torch
import numpy as np
import librosa
from scipy.io.wavfile import write
from utils import ignore_warnings, parse_yaml, load_ss_model
from models.clap_encoder import CLAP_Encoder
def build_audiosep(config_yaml, checkpoint_path, device):
ignore_warnings()
configs = parse_yaml(config_yaml)
query_encoder = CLAP_Encoder().eval()
model = load_ss_model(configs=configs, checkpoint_path=checkpoint_path, query_encoder=query_encoder).eval().to(device)
print(f'Loaded AudioSep model from [{checkpoint_path}]')
return model
def separate_audio(model, audio_file, text, output_file, device='cuda', use_chunk=False):
print(f'Separating audio from [{audio_file}] with textual query: [{text}]')
mixture, fs = librosa.load(audio_file, sr=32000, mono=True)
with torch.no_grad():
text = [text]
conditions = model.query_encoder.get_query_embed(
modality='text',
text=text,
device=device
)
input_dict = {
"mixture": torch.Tensor(mixture)[None, None, :].to(device),
"condition": conditions,
}
if use_chunk:
sep_segment = model.ss_model.chunk_inference(input_dict)
sep_segment = np.squeeze(sep_segment)
else:
sep_segment = model.ss_model(input_dict)["waveform"]
sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy()
write(output_file, 32000, np.round(sep_segment * 32767).astype(np.int16))
print(f'Separated audio written to [{output_file}]')
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = build_audiosep(
config_yaml='config/audiosep_base.yaml',
checkpoint_path='checkpoint/step=3920000.ckpt',
device=device)
audio_file = '/mnt/bn/data-xubo/project/AudioShop/YT_audios/Y3VHpLxtd498.wav'
text = 'pigeons are cooing in the background'
output_file = 'separated_audio.wav'
separate_audio(model, audio_file, text, output_file, device)