AudioDeNoiseAPI / evaluation /evaluate_esc50.py
arnavkumar24
Addon
89040ed
raw
history blame
2.92 kB
import os
import sys
import re
from typing import Dict, List
import csv
import pandas as pd
import numpy as np
import torch
from tqdm import tqdm
import pathlib
import librosa
import lightning.pytorch as pl
from models.clap_encoder import CLAP_Encoder
sys.path.append('../AudioSep/')
from utils import (
load_ss_model,
calculate_sdr,
calculate_sisdr,
parse_yaml,
get_mean_sdr_from_dict,
)
class ESC50Evaluator:
def __init__(
self,
sampling_rate=32000
) -> None:
r"""ESC-50 evaluator.
Returns:
None
"""
self.sampling_rate = sampling_rate
with open('evaluation/metadata/esc50_eval.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
eval_list = [row for row in csv_reader][1:]
self.eval_list = eval_list
self.audio_dir = 'evaluation/data/esc50'
def __call__(
self,
pl_model: pl.LightningModule
) -> Dict:
r"""Evalute."""
print(f'Evaluation on ESC-50 with [text label] queries.')
pl_model.eval()
device = pl_model.device
sisdrs_list = []
sdris_list = []
with torch.no_grad():
for eval_data in tqdm(self.eval_list):
idx, caption, _, _, = eval_data
source_path = os.path.join(self.audio_dir, f'segment-{idx}.wav')
mixture_path = os.path.join(self.audio_dir, f'mixture-{idx}.wav')
source, fs = librosa.load(source_path, sr=self.sampling_rate, mono=True)
mixture, fs = librosa.load(mixture_path, sr=self.sampling_rate, mono=True)
sdr_no_sep = calculate_sdr(ref=source, est=mixture)
text = [caption]
conditions = pl_model.query_encoder.get_query_embed(
modality='text',
text=text,
device=device
)
input_dict = {
"mixture": torch.Tensor(mixture)[None, None, :].to(device),
"condition": conditions,
}
sep_segment = pl_model.ss_model(input_dict)["waveform"]
# sep_segment: (batch_size=1, channels_num=1, segment_samples)
sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy()
# sep_segment: (segment_samples,)
sdr = calculate_sdr(ref=source, est=sep_segment)
sdri = sdr - sdr_no_sep
sisdr = calculate_sisdr(ref=source, est=sep_segment)
sisdrs_list.append(sisdr)
sdris_list.append(sdri)
mean_sdri = np.mean(sdris_list)
mean_sisdr = np.mean(sisdrs_list)
return mean_sisdr, mean_sdri