Spaces:
Sleeping
Sleeping
import random | |
import torch | |
import torch.nn as nn | |
import torchaudio | |
from models.CLAP.open_clip import create_model | |
from models.CLAP.training.data import get_audio_features | |
from transformers import RobertaTokenizer | |
class CLAP_Encoder(nn.Module): | |
def __init__( | |
self, | |
pretrained_path='checkpoint/music_speech_audioset_epoch_15_esc_89.98.pt', | |
sampling_rate=32000, | |
amodel = "HTSAT-base", | |
): | |
super().__init__() | |
self.device = "cpu" | |
self.precision = "fp32" | |
self.amodel = amodel # or 'PANN-14' | |
self.tmodel = "roberta" # the best text encoder in our training | |
self.enable_fusion = False # False if you do not want to use the fusion model | |
self.fusion_type = "aff_2d" | |
self.pretrained = pretrained_path | |
self.sampling_rate = sampling_rate | |
self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") | |
self.model, self.model_cfg = create_model( | |
self.amodel, | |
self.tmodel, | |
self.pretrained, | |
precision=self.precision, | |
device=self.device, | |
enable_fusion=self.enable_fusion, | |
fusion_type=self.fusion_type, | |
) | |
for p in self.model.parameters(): | |
p.requires_grad = False | |
self.model.eval() | |
self.encoder_type = 'CLAP' | |
def batch_to_list(self, batch): | |
ret = [] | |
for i in range(batch.size(0)): | |
ret.append(batch[i]) | |
return ret | |
def _get_audio_embed(self, batch): | |
# batch: [B, samples] | |
with torch.no_grad(): | |
audio_dict_list = [] | |
assert ( | |
self.sampling_rate == 32000 | |
), "We only support 32000 sampling rate" | |
# batch: [bs, 1, t-samples] | |
batch = torchaudio.functional.resample( | |
batch, orig_freq=self.sampling_rate, new_freq=48000 | |
) | |
for waveform in self.batch_to_list(batch): | |
audio_dict = {} | |
audio_dict = get_audio_features( | |
audio_dict, | |
waveform, | |
480000, | |
data_truncating="fusion", | |
data_filling="repeatpad", | |
audio_cfg=self.model_cfg["audio_cfg"], | |
) | |
audio_dict_list.append(audio_dict) | |
# [bs, 512] | |
embed = self.model.get_audio_embedding(audio_dict_list) | |
return embed.detach() | |
def _get_text_embed(self, batch): | |
double_batch = False | |
if len(batch) == 1: | |
batch = batch * 2 | |
double_batch = True | |
with torch.no_grad(): | |
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode | |
text_data = self.tokenizer(batch) | |
embed = self.model.get_text_embedding(text_data) | |
if double_batch: | |
embed = embed[0].unsqueeze(0) | |
return embed.detach() | |
def get_query_embed(self, modality, audio=None, text=None, use_text_ratio=0.5, device=None): | |
if modality == 'audio': | |
embed = self._get_audio_embed(audio) | |
elif modality == 'text': | |
embed = self._get_text_embed(text) | |
elif modality == 'hybird': | |
if random.random() > use_text_ratio: | |
embed = self._get_audio_embed(audio) | |
else: | |
embed = self._get_text_embed(text) | |
else: | |
raise NotImplementedError("Please check flag 'training_modality'.") | |
return embed.float() | |
def tokenizer(self, text): | |
result = self.tokenize( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
return_tensors="pt", | |
) | |
return {k: v.squeeze(0) for k, v in result.items()} | |