Spaces:
Running
Running
import os | |
import torch | |
import importlib | |
import torch.distributed as dist | |
try: | |
# noinspection PyUnresolvedReferences | |
from apex import amp | |
except ImportError: | |
amp = None | |
def relative_bias_interpolate(checkpoint,config): | |
for k in list(checkpoint['model']): | |
if 'relative_position_index' in k: | |
del checkpoint['model'][k] | |
if 'relative_position_bias_table' in k: | |
relative_position_bias_table = checkpoint['model'][k] | |
cls_bias = relative_position_bias_table[:1,:] | |
relative_position_bias_table = relative_position_bias_table[1:,:] | |
size = int(relative_position_bias_table.shape[0]**0.5) | |
img_size = (size+1)//2 | |
if 'stage_3' in k: | |
downsample_ratio = 16 | |
elif 'stage_4' in k: | |
downsample_ratio = 32 | |
new_img_size = config.DATA.IMG_SIZE//downsample_ratio | |
new_size = 2*new_img_size-1 | |
if new_size == size: | |
continue | |
relative_position_bias_table = relative_position_bias_table.reshape(size,size,-1) | |
relative_position_bias_table = relative_position_bias_table.unsqueeze(0).permute(0,3,1,2)#bs,nhead,h,w | |
relative_position_bias_table = torch.nn.functional.interpolate( | |
relative_position_bias_table, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
relative_position_bias_table = relative_position_bias_table.permute(0,2,3,1) | |
relative_position_bias_table = relative_position_bias_table.squeeze(0).reshape(new_size*new_size,-1) | |
relative_position_bias_table = torch.cat((cls_bias,relative_position_bias_table),dim=0) | |
checkpoint['model'][k] = relative_position_bias_table | |
return checkpoint | |
def load_pretained(config,model,logger=None,strict=False): | |
if logger is not None: | |
logger.info(f"==============> pretrain form {config.MODEL.PRETRAINED}....................") | |
checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu') | |
if 'model' not in checkpoint: | |
if 'state_dict_ema' in checkpoint: | |
checkpoint['model'] = checkpoint['state_dict_ema'] | |
else: | |
checkpoint['model'] = checkpoint | |
if config.MODEL.DORP_HEAD: | |
if 'head.weight' in checkpoint['model'] and 'head.bias' in checkpoint['model']: | |
if logger is not None: | |
logger.info(f"==============> drop head....................") | |
del checkpoint['model']['head.weight'] | |
del checkpoint['model']['head.bias'] | |
if 'head.fc.weight' in checkpoint['model'] and 'head.fc.bias' in checkpoint['model']: | |
if logger is not None: | |
logger.info(f"==============> drop head....................") | |
del checkpoint['model']['head.fc.weight'] | |
del checkpoint['model']['head.fc.bias'] | |
if config.MODEL.DORP_META: | |
if logger is not None: | |
logger.info(f"==============> drop meta head....................") | |
for k in list(checkpoint['model']): | |
if 'meta' in k: | |
del checkpoint['model'][k] | |
checkpoint = relative_bias_interpolate(checkpoint,config) | |
if 'point_coord' in checkpoint['model']: | |
if logger is not None: | |
logger.info(f"==============> drop point coord....................") | |
del checkpoint['model']['point_coord'] | |
msg = model.load_state_dict(checkpoint['model'], strict=strict) | |
del checkpoint | |
torch.cuda.empty_cache() | |
def load_checkpoint(config, model, optimizer, lr_scheduler, logger): | |
logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................") | |
if config.MODEL.RESUME.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
config.MODEL.RESUME, map_location='cpu', check_hash=True) | |
else: | |
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') | |
if 'model' not in checkpoint: | |
if 'state_dict_ema' in checkpoint: | |
checkpoint['model'] = checkpoint['state_dict_ema'] | |
else: | |
checkpoint['model'] = checkpoint | |
msg = model.load_state_dict(checkpoint['model'], strict=False) | |
logger.info(msg) | |
max_accuracy = 0.0 | |
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) | |
config.defrost() | |
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1 | |
config.freeze() | |
if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0": | |
amp.load_state_dict(checkpoint['amp']) | |
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})") | |
if 'max_accuracy' in checkpoint: | |
max_accuracy = checkpoint['max_accuracy'] | |
del checkpoint | |
torch.cuda.empty_cache() | |
return max_accuracy | |
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger): | |
save_state = {'model': model.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'lr_scheduler': lr_scheduler.state_dict(), | |
'max_accuracy': max_accuracy, | |
'epoch': epoch, | |
'config': config} | |
if config.AMP_OPT_LEVEL != "O0": | |
save_state['amp'] = amp.state_dict() | |
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth') | |
logger.info(f"{save_path} saving......") | |
torch.save(save_state, save_path) | |
logger.info(f"{save_path} saved !!!") | |
lastest_save_path = os.path.join(config.OUTPUT, f'latest.pth') | |
logger.info(f"{lastest_save_path} saving......") | |
torch.save(save_state, lastest_save_path) | |
logger.info(f"{lastest_save_path} saved !!!") | |
def get_grad_norm(parameters, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
total_norm = total_norm ** (1. / norm_type) | |
return total_norm | |
def auto_resume_helper(output_dir): | |
checkpoints = os.listdir(output_dir) | |
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')] | |
print(f"All checkpoints founded in {output_dir}: {checkpoints}") | |
if len(checkpoints) > 0: | |
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime) | |
print(f"The latest checkpoint founded: {latest_checkpoint}") | |
resume_file = latest_checkpoint | |
else: | |
resume_file = None | |
return resume_file | |
def reduce_tensor(tensor): | |
rt = tensor.clone() | |
dist.all_reduce(rt, op=dist.ReduceOp.SUM) | |
rt /= dist.get_world_size() | |
return rt | |
def load_ext(name, funcs): | |
ext = importlib.import_module(name) | |
for fun in funcs: | |
assert hasattr(ext, fun), f'{fun} miss in module {name}' | |
return ext | |