Anupam251272's picture
Create app.py
cf45e4a verified
# Install required packages
#!pip install gradio pandas numpy plotly scikit-learn matplotlib seaborn openpyxl
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from sklearn.preprocessing import StandardScaler
import io
class DataVisualizationPlatform:
def __init__(self):
self.df = None
self.processed_df = None
self.scaler = StandardScaler()
def load_and_update_columns(self, file):
"""Load data and return column choices"""
try:
if file.name.endswith('.csv'):
self.df = pd.read_csv(file.name)
else:
self.df = pd.read_excel(file.name)
columns = list(self.df.columns)
# Add "None" option for color column
columns_with_none = ["None"] + columns
return {
"status": f"Data loaded successfully. Shape: {self.df.shape}",
"columns": columns,
"columns_with_none": columns_with_none
}
except Exception as e:
return {
"status": f"Error loading data: {str(e)}",
"columns": [],
"columns_with_none": ["None"]
}
def preprocess_data(self):
"""Preprocess the data"""
if self.df is None:
return "Please load data first"
try:
# Handle missing values
self.processed_df = self.df.copy()
numeric_cols = self.df.select_dtypes(include=['float64', 'int64']).columns
self.processed_df[numeric_cols] = self.processed_df[numeric_cols].fillna(self.processed_df[numeric_cols].mean())
# Scale numeric features
self.processed_df[numeric_cols] = self.scaler.fit_transform(self.processed_df[numeric_cols])
return "Data preprocessing completed successfully"
except Exception as e:
return f"Error during preprocessing: {str(e)}"
def generate_summary(self):
"""Generate basic statistics and info about the dataset"""
if self.df is None:
return "Please load data first"
try:
buffer = io.StringIO()
self.df.info(buf=buffer)
info_str = buffer.getvalue()
summary = f"""
Dataset Summary:
----------------
Shape: {self.df.shape}
Data Info:
{info_str}
Basic Statistics:
{self.df.describe().to_string()}
"""
return summary
except Exception as e:
return f"Error generating summary: {str(e)}"
def create_correlation_heatmap(self):
"""Create correlation heatmap for numeric columns"""
if self.df is None:
return None
try:
numeric_cols = self.df.select_dtypes(include=['float64', 'int64']).columns
if len(numeric_cols) == 0:
return None
corr = self.df[numeric_cols].corr()
fig = px.imshow(corr,
labels=dict(color="Correlation"),
title="Correlation Heatmap")
return fig
except Exception as e:
print(f"Error creating heatmap: {str(e)}")
return None
def create_scatter_plot(self, x_col, y_col, color_col):
"""Create interactive scatter plot"""
if self.df is None or not x_col or not y_col:
return None
try:
if color_col == "None":
color_col = None
fig = px.scatter(self.df, x=x_col, y=y_col, color=color_col,
title=f"Scatter Plot: {x_col} vs {y_col}")
return fig
except Exception as e:
print(f"Error creating scatter plot: {str(e)}")
return None
def create_time_series(self, date_col, value_col):
"""Create time series plot"""
if self.df is None or not date_col or not value_col:
return None
try:
fig = px.line(self.df, x=date_col, y=value_col,
title=f"Time Series: {value_col} over {date_col}")
return fig
except Exception as e:
print(f"Error creating time series: {str(e)}")
return None
def create_visualization_interface():
dvp = DataVisualizationPlatform()
with gr.Blocks(title="Data Visualization Platform") as interface:
gr.Markdown("# Interactive Data Visualization Platform")
# Shared state for column choices
state = gr.State({
"columns": [],
"columns_with_none": ["None"]
})
with gr.Tab("Data Loading & Preprocessing"):
file_input = gr.File(label="Upload CSV or Excel file")
load_btn = gr.Button("Load Data")
load_output = gr.Textbox(label="Loading Status")
preprocess_btn = gr.Button("Preprocess Data")
preprocess_output = gr.Textbox(label="Preprocessing Status")
summary_btn = gr.Button("Generate Summary")
summary_output = gr.Textbox(label="Data Summary", lines=10)
with gr.Tab("Visualizations"):
with gr.Row():
with gr.Column():
# Correlation Heatmap
heatmap_btn = gr.Button("Generate Correlation Heatmap")
heatmap_plot = gr.Plot(label="Correlation Heatmap")
with gr.Column():
# Scatter Plot
x_col = gr.Dropdown(label="X Column", choices=[])
y_col = gr.Dropdown(label="Y Column", choices=[])
color_col = gr.Dropdown(label="Color Column (optional)", choices=["None"])
scatter_btn = gr.Button("Generate Scatter Plot")
scatter_plot = gr.Plot(label="Scatter Plot")
with gr.Row():
# Time Series
date_col = gr.Dropdown(label="Date Column", choices=[])
value_col = gr.Dropdown(label="Value Column", choices=[])
timeseries_btn = gr.Button("Generate Time Series")
timeseries_plot = gr.Plot(label="Time Series Plot")
def update_interface(file):
result = dvp.load_and_update_columns(file)
return {
load_output: result["status"],
x_col: gr.Dropdown(choices=result["columns"]),
y_col: gr.Dropdown(choices=result["columns"]),
color_col: gr.Dropdown(choices=result["columns_with_none"]),
date_col: gr.Dropdown(choices=result["columns"]),
value_col: gr.Dropdown(choices=result["columns"])
}
# Event handlers
load_btn.click(
fn=update_interface,
inputs=[file_input],
outputs=[load_output, x_col, y_col, color_col, date_col, value_col]
)
preprocess_btn.click(fn=dvp.preprocess_data, outputs=preprocess_output)
summary_btn.click(fn=dvp.generate_summary, outputs=summary_output)
heatmap_btn.click(fn=dvp.create_correlation_heatmap, outputs=heatmap_plot)
scatter_btn.click(
fn=dvp.create_scatter_plot,
inputs=[x_col, y_col, color_col],
outputs=scatter_plot
)
timeseries_btn.click(
fn=dvp.create_time_series,
inputs=[date_col, value_col],
outputs=timeseries_plot
)
return interface
# Launch the interface
demo = create_visualization_interface()
demo.launch()