Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required packages
|
2 |
+
#!pip install gradio pandas numpy plotly scikit-learn matplotlib seaborn openpyxl
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
import io
|
11 |
+
|
12 |
+
class DataVisualizationPlatform:
|
13 |
+
def __init__(self):
|
14 |
+
self.df = None
|
15 |
+
self.processed_df = None
|
16 |
+
self.scaler = StandardScaler()
|
17 |
+
|
18 |
+
def load_and_update_columns(self, file):
|
19 |
+
"""Load data and return column choices"""
|
20 |
+
try:
|
21 |
+
if file.name.endswith('.csv'):
|
22 |
+
self.df = pd.read_csv(file.name)
|
23 |
+
else:
|
24 |
+
self.df = pd.read_excel(file.name)
|
25 |
+
|
26 |
+
columns = list(self.df.columns)
|
27 |
+
# Add "None" option for color column
|
28 |
+
columns_with_none = ["None"] + columns
|
29 |
+
|
30 |
+
return {
|
31 |
+
"status": f"Data loaded successfully. Shape: {self.df.shape}",
|
32 |
+
"columns": columns,
|
33 |
+
"columns_with_none": columns_with_none
|
34 |
+
}
|
35 |
+
except Exception as e:
|
36 |
+
return {
|
37 |
+
"status": f"Error loading data: {str(e)}",
|
38 |
+
"columns": [],
|
39 |
+
"columns_with_none": ["None"]
|
40 |
+
}
|
41 |
+
|
42 |
+
def preprocess_data(self):
|
43 |
+
"""Preprocess the data"""
|
44 |
+
if self.df is None:
|
45 |
+
return "Please load data first"
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Handle missing values
|
49 |
+
self.processed_df = self.df.copy()
|
50 |
+
numeric_cols = self.df.select_dtypes(include=['float64', 'int64']).columns
|
51 |
+
self.processed_df[numeric_cols] = self.processed_df[numeric_cols].fillna(self.processed_df[numeric_cols].mean())
|
52 |
+
|
53 |
+
# Scale numeric features
|
54 |
+
self.processed_df[numeric_cols] = self.scaler.fit_transform(self.processed_df[numeric_cols])
|
55 |
+
|
56 |
+
return "Data preprocessing completed successfully"
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error during preprocessing: {str(e)}"
|
59 |
+
|
60 |
+
def generate_summary(self):
|
61 |
+
"""Generate basic statistics and info about the dataset"""
|
62 |
+
if self.df is None:
|
63 |
+
return "Please load data first"
|
64 |
+
|
65 |
+
try:
|
66 |
+
buffer = io.StringIO()
|
67 |
+
self.df.info(buf=buffer)
|
68 |
+
info_str = buffer.getvalue()
|
69 |
+
|
70 |
+
summary = f"""
|
71 |
+
Dataset Summary:
|
72 |
+
----------------
|
73 |
+
Shape: {self.df.shape}
|
74 |
+
|
75 |
+
Data Info:
|
76 |
+
{info_str}
|
77 |
+
|
78 |
+
Basic Statistics:
|
79 |
+
{self.df.describe().to_string()}
|
80 |
+
"""
|
81 |
+
return summary
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error generating summary: {str(e)}"
|
84 |
+
|
85 |
+
def create_correlation_heatmap(self):
|
86 |
+
"""Create correlation heatmap for numeric columns"""
|
87 |
+
if self.df is None:
|
88 |
+
return None
|
89 |
+
|
90 |
+
try:
|
91 |
+
numeric_cols = self.df.select_dtypes(include=['float64', 'int64']).columns
|
92 |
+
if len(numeric_cols) == 0:
|
93 |
+
return None
|
94 |
+
|
95 |
+
corr = self.df[numeric_cols].corr()
|
96 |
+
fig = px.imshow(corr,
|
97 |
+
labels=dict(color="Correlation"),
|
98 |
+
title="Correlation Heatmap")
|
99 |
+
return fig
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error creating heatmap: {str(e)}")
|
102 |
+
return None
|
103 |
+
|
104 |
+
def create_scatter_plot(self, x_col, y_col, color_col):
|
105 |
+
"""Create interactive scatter plot"""
|
106 |
+
if self.df is None or not x_col or not y_col:
|
107 |
+
return None
|
108 |
+
|
109 |
+
try:
|
110 |
+
if color_col == "None":
|
111 |
+
color_col = None
|
112 |
+
|
113 |
+
fig = px.scatter(self.df, x=x_col, y=y_col, color=color_col,
|
114 |
+
title=f"Scatter Plot: {x_col} vs {y_col}")
|
115 |
+
return fig
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error creating scatter plot: {str(e)}")
|
118 |
+
return None
|
119 |
+
|
120 |
+
def create_time_series(self, date_col, value_col):
|
121 |
+
"""Create time series plot"""
|
122 |
+
if self.df is None or not date_col or not value_col:
|
123 |
+
return None
|
124 |
+
|
125 |
+
try:
|
126 |
+
fig = px.line(self.df, x=date_col, y=value_col,
|
127 |
+
title=f"Time Series: {value_col} over {date_col}")
|
128 |
+
return fig
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error creating time series: {str(e)}")
|
131 |
+
return None
|
132 |
+
|
133 |
+
def create_visualization_interface():
|
134 |
+
dvp = DataVisualizationPlatform()
|
135 |
+
|
136 |
+
with gr.Blocks(title="Data Visualization Platform") as interface:
|
137 |
+
gr.Markdown("# Interactive Data Visualization Platform")
|
138 |
+
|
139 |
+
# Shared state for column choices
|
140 |
+
state = gr.State({
|
141 |
+
"columns": [],
|
142 |
+
"columns_with_none": ["None"]
|
143 |
+
})
|
144 |
+
|
145 |
+
with gr.Tab("Data Loading & Preprocessing"):
|
146 |
+
file_input = gr.File(label="Upload CSV or Excel file")
|
147 |
+
load_btn = gr.Button("Load Data")
|
148 |
+
load_output = gr.Textbox(label="Loading Status")
|
149 |
+
preprocess_btn = gr.Button("Preprocess Data")
|
150 |
+
preprocess_output = gr.Textbox(label="Preprocessing Status")
|
151 |
+
summary_btn = gr.Button("Generate Summary")
|
152 |
+
summary_output = gr.Textbox(label="Data Summary", lines=10)
|
153 |
+
|
154 |
+
with gr.Tab("Visualizations"):
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
# Correlation Heatmap
|
158 |
+
heatmap_btn = gr.Button("Generate Correlation Heatmap")
|
159 |
+
heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
# Scatter Plot
|
163 |
+
x_col = gr.Dropdown(label="X Column", choices=[])
|
164 |
+
y_col = gr.Dropdown(label="Y Column", choices=[])
|
165 |
+
color_col = gr.Dropdown(label="Color Column (optional)", choices=["None"])
|
166 |
+
scatter_btn = gr.Button("Generate Scatter Plot")
|
167 |
+
scatter_plot = gr.Plot(label="Scatter Plot")
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
# Time Series
|
171 |
+
date_col = gr.Dropdown(label="Date Column", choices=[])
|
172 |
+
value_col = gr.Dropdown(label="Value Column", choices=[])
|
173 |
+
timeseries_btn = gr.Button("Generate Time Series")
|
174 |
+
timeseries_plot = gr.Plot(label="Time Series Plot")
|
175 |
+
|
176 |
+
def update_interface(file):
|
177 |
+
result = dvp.load_and_update_columns(file)
|
178 |
+
return {
|
179 |
+
load_output: result["status"],
|
180 |
+
x_col: gr.Dropdown(choices=result["columns"]),
|
181 |
+
y_col: gr.Dropdown(choices=result["columns"]),
|
182 |
+
color_col: gr.Dropdown(choices=result["columns_with_none"]),
|
183 |
+
date_col: gr.Dropdown(choices=result["columns"]),
|
184 |
+
value_col: gr.Dropdown(choices=result["columns"])
|
185 |
+
}
|
186 |
+
|
187 |
+
# Event handlers
|
188 |
+
load_btn.click(
|
189 |
+
fn=update_interface,
|
190 |
+
inputs=[file_input],
|
191 |
+
outputs=[load_output, x_col, y_col, color_col, date_col, value_col]
|
192 |
+
)
|
193 |
+
|
194 |
+
preprocess_btn.click(fn=dvp.preprocess_data, outputs=preprocess_output)
|
195 |
+
summary_btn.click(fn=dvp.generate_summary, outputs=summary_output)
|
196 |
+
heatmap_btn.click(fn=dvp.create_correlation_heatmap, outputs=heatmap_plot)
|
197 |
+
scatter_btn.click(
|
198 |
+
fn=dvp.create_scatter_plot,
|
199 |
+
inputs=[x_col, y_col, color_col],
|
200 |
+
outputs=scatter_plot
|
201 |
+
)
|
202 |
+
timeseries_btn.click(
|
203 |
+
fn=dvp.create_time_series,
|
204 |
+
inputs=[date_col, value_col],
|
205 |
+
outputs=timeseries_plot
|
206 |
+
)
|
207 |
+
|
208 |
+
return interface
|
209 |
+
|
210 |
+
# Launch the interface
|
211 |
+
demo = create_visualization_interface()
|
212 |
+
demo.launch()
|