|
import torch |
|
import torchvision |
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from PIL import Image |
|
import torch.nn as nn |
|
from pathlib import Path |
|
import cv2 |
|
from torchvision import transforms |
|
from efficientnet_pytorch import EfficientNet |
|
import logging |
|
import warnings |
|
from sklearn.preprocessing import StandardScaler |
|
from typing import Optional, Dict, Any, Tuple |
|
import json |
|
import os |
|
from datetime import datetime |
|
import albumentations as A |
|
from transformers import MarianMTModel, MarianTokenizer |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import smtplib |
|
from email.mime.text import MIMEText |
|
from email.mime.multipart import MIMEMultipart |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', |
|
handlers=[ |
|
logging.FileHandler('skin_diagnostic.log'), |
|
logging.StreamHandler() |
|
] |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
class ImageValidator: |
|
"""Class for image validation and quality checking""" |
|
|
|
@staticmethod |
|
def validate_image(image: np.ndarray) -> Tuple[bool, str]: |
|
""" |
|
Validate image quality and characteristics |
|
Returns: (is_valid, message) |
|
""" |
|
try: |
|
|
|
if image.shape[0] < 224 or image.shape[1] < 224: |
|
return False, "Image resolution too low. Minimum 224x224 required." |
|
|
|
|
|
brightness = np.mean(image) |
|
if brightness < 30: |
|
return False, "Image too dark. Please capture in better lighting." |
|
if brightness > 240: |
|
return False, "Image too bright. Please reduce exposure." |
|
|
|
|
|
laplacian_var = cv2.Laplacian(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), cv2.CV_64F).var() |
|
if laplacian_var < 100: |
|
return False, "Image is too blurry. Please provide a clearer image." |
|
|
|
|
|
color_std = np.std(image, axis=(0,1)) |
|
if np.mean(color_std) < 20: |
|
return False, "Image lacks color variation. Please ensure proper lighting." |
|
|
|
return True, "Image validation successful" |
|
|
|
except Exception as e: |
|
logger.error(f"Image validation error: {str(e)}") |
|
return False, "Error during image validation" |
|
|
|
class AdvancedImageAnalysis: |
|
"""Class for sophisticated image analysis techniques""" |
|
|
|
def __init__(self): |
|
self.scaler = StandardScaler() |
|
|
|
def analyze_lesion(self, image: np.ndarray) -> Dict[str, float]: |
|
""" |
|
Perform advanced analysis of skin lesion characteristics |
|
""" |
|
try: |
|
|
|
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) |
|
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB) |
|
|
|
|
|
features = { |
|
'asymmetry': self._calculate_asymmetry(image), |
|
'border_irregularity': self._analyze_border(image), |
|
'color_variation': self._analyze_color(hsv), |
|
'diameter': self._estimate_diameter(image), |
|
'texture': self._analyze_texture(lab), |
|
'vascularity': self._analyze_vascularity(image), |
|
} |
|
|
|
return features |
|
|
|
except Exception as e: |
|
logger.error(f"Error in lesion analysis: {str(e)}") |
|
return {} |
|
|
|
def _calculate_asymmetry(self, image: np.ndarray) -> float: |
|
"""Calculate asymmetry score of the lesion""" |
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) |
|
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) |
|
|
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if not contours: |
|
return 0.0 |
|
|
|
|
|
largest_contour = max(contours, key=cv2.contourArea) |
|
|
|
|
|
moments = cv2.moments(largest_contour) |
|
if moments['m00'] == 0: |
|
return 0.0 |
|
|
|
|
|
cx = moments['m10'] / moments['m00'] |
|
cy = moments['m01'] / moments['m00'] |
|
|
|
return float(cv2.matchShapes(largest_contour, cv2.flip(largest_contour, 1), 1, 0.0)) |
|
|
|
def _analyze_border(self, image: np.ndarray) -> float: |
|
"""Analyze border irregularity""" |
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) |
|
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) |
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if not contours: |
|
return 0.0 |
|
|
|
largest_contour = max(contours, key=cv2.contourArea) |
|
perimeter = cv2.arcLength(largest_contour, True) |
|
area = cv2.contourArea(largest_contour) |
|
|
|
if area == 0: |
|
return 0.0 |
|
|
|
circularity = 4 * np.pi * area / (perimeter * perimeter) |
|
return 1 - circularity |
|
|
|
def _analyze_color(self, hsv: np.ndarray) -> float: |
|
"""Analyze color variation in the lesion""" |
|
return float(np.std(hsv[:,:,0])) |
|
|
|
def _estimate_diameter(self, image: np.ndarray) -> float: |
|
"""Estimate lesion diameter""" |
|
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) |
|
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) |
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if not contours: |
|
return 0.0 |
|
|
|
largest_contour = max(contours, key=cv2.contourArea) |
|
_, _, w, h = cv2.boundingRect(largest_contour) |
|
return max(w, h) |
|
|
|
def _analyze_texture(self, lab: np.ndarray) -> float: |
|
"""Analyze texture patterns""" |
|
gray = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR) |
|
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
glcm = cv2.calcHist([gray], [0], None, [16], [0,256]) |
|
glcm = glcm.flatten() / glcm.sum() |
|
|
|
|
|
entropy = -np.sum(glcm * np.log2(glcm + 1e-7)) |
|
return float(entropy) |
|
|
|
def _analyze_vascularity(self, image: np.ndarray) -> float: |
|
"""Analyze vascular patterns""" |
|
|
|
red_channel = image[:,:,0] |
|
return float(np.percentile(red_channel, 95) - np.percentile(red_channel, 5)) |
|
|
|
class SkinDiagnosticSystem: |
|
def __init__(self, model_path: Optional[str] = None): |
|
|
|
self.classes = [ |
|
'Melanocytic nevi', |
|
'Melanoma', |
|
'Benign keratosis-like lesions', |
|
'Basal cell carcinoma', |
|
'Actinic keratoses', |
|
'Vascular lesions', |
|
'Dermatofibroma' |
|
] |
|
|
|
self.risk_levels = { |
|
'Melanoma': 'High', |
|
'Basal cell carcinoma': 'High', |
|
'Actinic keratoses': 'Moderate', |
|
'Vascular lesions': 'Low to Moderate', |
|
'Benign keratosis-like lesions': 'Low', |
|
'Melanocytic nevi': 'Low', |
|
'Dermatofibroma': 'Low' |
|
} |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.image_validator = ImageValidator() |
|
self.image_analyzer = AdvancedImageAnalysis() |
|
|
|
|
|
self.model = self._load_model(model_path) |
|
self.transform = self._get_transforms() |
|
|
|
|
|
self.medical_context = self._load_medical_context() |
|
|
|
def _load_model(self, model_path: Optional[str]) -> nn.Module: |
|
"""Load model with checkpointing support""" |
|
try: |
|
model = EfficientNet.from_pretrained('efficientnet-b4') |
|
num_ftrs = model._fc.in_features |
|
model._fc = nn.Sequential( |
|
nn.Linear(num_ftrs, 512), |
|
nn.ReLU(), |
|
nn.Dropout(0.2), |
|
nn.Linear(512, len(self.classes)) |
|
) |
|
|
|
if model_path and os.path.exists(model_path): |
|
logger.info(f"Loading model checkpoint from {model_path}") |
|
checkpoint = torch.load(model_path, map_location=self.device) |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
logger.info(f"Model checkpoint loaded. Epoch: {checkpoint['epoch']}") |
|
|
|
model = model.to(self.device) |
|
model.eval() |
|
return model |
|
|
|
except Exception as e: |
|
logger.error(f"Error loading model: {str(e)}") |
|
raise |
|
|
|
def _get_transforms(self) -> transforms.Compose: |
|
"""Get image transformations""" |
|
return transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def _load_medical_context(self) -> Dict[str, Any]: |
|
"""Load medical context and warnings""" |
|
return { |
|
'Melanoma': { |
|
'description': 'A serious form of skin cancer that begins in melanocytes.', |
|
'warning': 'URGENT: Immediate medical attention required. This is a potentially serious condition.', |
|
'risk_factors': [ |
|
'UV exposure', |
|
'Fair skin', |
|
'Family history', |
|
'Multiple moles' |
|
], |
|
'follow_up': 'Immediate dermatologist consultation required' |
|
}, |
|
'Basal cell carcinoma': { |
|
'description': 'The most common type of skin cancer.', |
|
'warning': 'Medical attention required. While typically slow-growing, treatment is necessary.', |
|
'risk_factors': [ |
|
'Sun exposure', |
|
'Fair skin', |
|
'Age over 50', |
|
'Prior radiation therapy' |
|
], |
|
'follow_up': 'Schedule dermatologist appointment within 1-2 weeks' |
|
}, |
|
|
|
} |
|
|
|
def save_checkpoint(self, epoch: int, optimizer: torch.optim.Optimizer, loss: float) -> None: |
|
"""Save model checkpoint""" |
|
checkpoint_dir = Path('checkpoints') |
|
checkpoint_dir.mkdir(exist_ok=True) |
|
|
|
checkpoint_path = checkpoint_dir / f'model_checkpoint_epoch_{epoch}.pth' |
|
torch.save({ |
|
'epoch': epoch, |
|
'model_state_dict': self.model.state_dict(), |
|
'optimizer_state_dict': optimizer.state_dict(), |
|
'loss': loss, |
|
}, checkpoint_path) |
|
|
|
logger.info(f"Checkpoint saved: {checkpoint_path}") |
|
|
|
def analyze_image(self, image: np.ndarray) -> Dict[str, Any]: |
|
"""Main analysis function with validation and advanced analysis""" |
|
try: |
|
|
|
is_valid, validation_message = self.image_validator.validate_image(image) |
|
if not is_valid: |
|
return {'error': validation_message} |
|
|
|
|
|
pil_image = Image.fromarray(image) |
|
|
|
|
|
img_tensor = self.transform(pil_image).unsqueeze(0).to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model(img_tensor) |
|
probs = torch.nn.functional.softmax(outputs, dim=1) |
|
|
|
|
|
pred_prob, pred_idx = torch.max(probs, 1) |
|
condition = self.classes[pred_idx] |
|
confidence = pred_prob.item() * 100 |
|
|
|
|
|
analysis_results = self.image_analyzer.analyze_lesion(image) |
|
|
|
|
|
medical_info = self.medical_context.get(condition, {}) |
|
|
|
|
|
response = { |
|
'condition': condition, |
|
'confidence': confidence, |
|
'risk_level': self.risk_levels.get(condition, 'Unknown'), |
|
'analysis': analysis_results, |
|
'medical_context': medical_info, |
|
'warning': medical_info.get('warning', ''), |
|
'timestamp': datetime.now().isoformat() |
|
} |
|
|
|
|
|
logger.info(f"Analysis completed for condition: {condition} (confidence: {confidence:.2f}%)") |
|
|
|
return response |
|
|
|
except Exception as e: |
|
logger.error(f"Error in image analysis: {str(e)}") |
|
return {'error': 'Analysis failed. Please try again.'} |
|
|
|
def create_gradio_interface(): |
|
system = SkinDiagnosticSystem() |
|
|
|
|
|
translation_models = { |
|
'hi': ('Helsinki-NLP/opus-mt-en-hi', MarianTokenizer, MarianMTModel), |
|
'ta': ('Helsinki-NLP/opus-mt-en-ta', MarianTokenizer, MarianMTModel), |
|
'te': ('Helsinki-NLP/opus-mt-en-te', MarianTokenizer, MarianMTModel), |
|
'bn': ('Helsinki-NLP/opus-mt-en-bn', MarianTokenizer, MarianMTModel), |
|
'mr': ('Helsinki-NLP/opus-mt-en-mr', MarianTokenizer, MarianMTModel), |
|
'pa': ('Helsinki-NLP/opus-mt-en-pa', MarianTokenizer, MarianMTModel), |
|
'gu': ('Helsinki-NLP/opus-mt-en-gu', MarianTokenizer, MarianMTModel), |
|
'kn': ('Helsinki-NLP/opus-mt-en-kn', MarianTokenizer, MarianMTModel), |
|
'ml': ('Helsinki-NLP/opus-mt-en-ml', MarianTokenizer, MarianMTModel), |
|
} |
|
|
|
def process_image(image, language, email=None): |
|
result = system.analyze_image(image) |
|
|
|
if 'error' in result: |
|
return f"Error: {result['error']}" |
|
|
|
|
|
output = "ANALYSIS RESULTS\n" + "="*50 + "\n\n" |
|
|
|
|
|
output += f"Detected Condition: {result['condition']}\n" |
|
output += f"Confidence: {result['confidence']:.2f}%\n" |
|
output += f"Risk Level: {result['risk_level']}\n\n" |
|
|
|
|
|
if result['warning']: |
|
output += f"⚠️ WARNING ⚠️\n{result['warning']}\n\n" |
|
|
|
|
|
output += "Detailed Analysis:\n" + "-"*20 + "\n" |
|
for metric, value in result['analysis'].items(): |
|
output += f"{metric}: {value:.2f}\n" |
|
|
|
|
|
if 'medical_context' in result and result['medical_context']: |
|
output += "\nMedical Context:\n" + "-"*20 + "\n" |
|
context = result['medical_context'] |
|
output += f"Description: {context.get('description', 'N/A')}\n" |
|
|
|
if 'risk_factors' in context: |
|
output += "\nRisk Factors:\n" |
|
for factor in context['risk_factors']: |
|
output += f"- {factor}\n" |
|
|
|
if 'follow_up' in context: |
|
output += f"\nRecommended Follow-up:\n{context['follow_up']}\n" |
|
|
|
|
|
output += f"\nAnalysis Timestamp: {result['timestamp']}\n" |
|
|
|
|
|
output += "\n" + "="*50 + "\n" |
|
output += "DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice. Please consult a qualified healthcare provider for proper diagnosis and treatment." |
|
|
|
|
|
if language != 'en': |
|
model_name, tokenizer_class, model_class = translation_models[language] |
|
tokenizer = tokenizer_class.from_pretrained(model_name) |
|
model = model_class.from_pretrained(model_name) |
|
inputs = tokenizer(output, return_tensors="pt", padding=True, truncation=True) |
|
translated = model.generate(**inputs) |
|
translated_output = tokenizer.decode(translated[0], skip_special_tokens=True) |
|
else: |
|
translated_output = output |
|
|
|
|
|
if email: |
|
send_email(email, translated_output) |
|
|
|
return translated_output |
|
|
|
def send_email(to_email, message): |
|
from_email = "your_email@example.com" |
|
password = "your_password" |
|
|
|
msg = MIMEMultipart() |
|
msg['From'] = from_email |
|
msg['To'] = to_email |
|
msg['Subject'] = "Skin Lesion Analysis Results" |
|
|
|
msg.attach(MIMEText(message, 'plain')) |
|
|
|
server = smtplib.SMTP('smtp.example.com', 587) |
|
server.starttls() |
|
server.login(from_email, password) |
|
server.sendmail(from_email, to_email, msg.as_string()) |
|
server.quit() |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_image, |
|
inputs=[ |
|
gr.Image(type="numpy", label="Upload Skin Image"), |
|
gr.Dropdown(choices=["en", "hi", "ta", "te", "bn", "mr", "pa", "gu", "kn", "ml"], label="Select Language"), |
|
gr.Textbox(label="Email (optional)", placeholder="Enter your email to receive results") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Analysis Results", lines=20) |
|
], |
|
title="Advanced Skin Lesion Analysis System", |
|
description=""" |
|
This system analyzes skin lesions using advanced computer vision and deep learning techniques. |
|
|
|
Key Features: |
|
- Lesion classification based on the HAM10000 dataset |
|
- Advanced image quality validation |
|
- Detailed analysis of lesion characteristics |
|
- Medical context and risk assessment |
|
- Option to receive results via email |
|
|
|
Important: This tool is for educational purposes only and should not replace professional medical diagnosis. |
|
""", |
|
examples=[ |
|
["example_melanoma.jpg", "en", ""], |
|
["example_nevus.jpg", "hi", ""], |
|
["example_bcc.jpg", "ta", ""] |
|
], |
|
analytics_enabled=False, |
|
) |
|
|
|
return iface |
|
|
|
iface = create_gradio_interface() |
|
iface.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=True, |
|
) |