Spaces:
Build error
Build error
from transformers import pipeline | |
import gradio as gr | |
from pyctcdecode import BeamSearchDecoderCTC | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio | |
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor | |
import librosa | |
import numpy as np | |
import subprocess | |
def resample(speech_array, sampling_rate): | |
resampler = torchaudio.transforms.Resample(sampling_rate) | |
speech = resampler(speech_array).squeeze() | |
return speech | |
def predict(speech_array, sampling_rate): | |
speech = resample(speech_array, sampling_rate) | |
inputs = feature_extactor(speech, sampling_rate=SR, return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to(device) for key in inputs} | |
with torch.no_grad(): | |
logits = model_(**inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] | |
return outputs | |
TRUST = True | |
SR = 16000 | |
config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) | |
model = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def transcribe(audio): | |
sr, audio = audio[0], audio[1] | |
return predict(audio, sr) | |
def get_asr_interface(): | |
return gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="numpy") | |
], | |
outputs=[ | |
"textbox" | |
]) | |
interfaces = [ | |
get_asr_interface() | |
] | |
names = [ | |
"Russian Emotion Recognition" | |
] | |
gr.TabbedInterface(interfaces, names).launch(server_name = "0.0.0.0", enable_queue=False) |