SFM_Inference_Demo / models_Facies.py
Anirudh Bhalekar
added models and util folder
a3f0d6c
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm.models.vision_transformer
import numpy as np
from util.pos_embed import get_2d_sincos_pos_embed
from util.variable_pos_embed import interpolate_pos_embed_variable
class FlexiblePatchEmbed(nn.Module):
""" 2D Image to Patch Embedding that handles variable input sizes """
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, bias=True):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.num_patches = (img_size // patch_size) ** 2 # default number of patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
def forward(self, x):
B, C, H, W = x.shape
# Calculate number of patches dynamically
self.num_patches = (H // self.patch_size) * (W // self.patch_size)
x = self.proj(x).flatten(2).transpose(1, 2) # BCHW -> BNC
return x
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
""" Vision Transformer with support for variable image sizes and adaptive positional embeddings
"""
def __init__(self, global_pool=False, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
self.global_pool = global_pool
self.decoder = VIT_MLAHead(mla_channels=self.embed_dim,num_classes=self.num_classes)
self.segmentation_head = SegmentationHead(
in_channels=16,
out_channels=self.num_classes,
kernel_size=3,
)
if self.global_pool:
norm_layer = kwargs['norm_layer']
embed_dim = kwargs['embed_dim']
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
def interpolate_pos_encoding(self, x, h, w):
"""
Interpolate positional embeddings for arbitrary input sizes
"""
npatch = x.shape[1] - 1 # subtract 1 for cls token
N = self.pos_embed.shape[1] - 1 # original number of patches
if npatch == N and h == w:
return self.pos_embed
# Use the new variable position embedding utility
return interpolate_pos_embed_variable(self.pos_embed, h, w, cls_token=True)
def forward_features(self, x):
B, C, H, W = x.shape
# Handle padding for non-16-divisible images
patch_size = self.patch_embed.patch_size
pad_h = (patch_size - H % patch_size) % patch_size
pad_w = (patch_size - W % patch_size) % patch_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
H_padded, W_padded = H + pad_h, W + pad_w
else:
H_padded, W_padded = H, W
# Extract patches
x = self.patch_embed(x)
_H, _W = H_padded // patch_size, W_padded // patch_size
# Add class token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# Add interpolated positional embeddings
pos_embed = self.interpolate_pos_encoding(x, _H, _W)
x = x + pos_embed
x = self.pos_drop(x)
featureskip = []
featureskipnum = 1
for blk in self.blocks:
x = blk(x)
if featureskipnum % (len(self.blocks) // 4) == 0:
featureskip.append(x[:, 1:, :]) # exclude cls token
featureskipnum += 1
# Pass original dimensions for proper reconstruction
x = self.decoder(featureskip[0], featureskip[1], featureskip[2], featureskip[3],
h=_H, w=_W, target_h=H, target_w=W)
return x
def forward(self, x):
x = self.forward_features(x)
return x
class Conv2dReLU(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
use_batchnorm=True,
):
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=not (use_batchnorm),
)
relu = nn.ReLU(inplace=True)
bn = nn.BatchNorm2d(out_channels)
super(Conv2dReLU, self).__init__(conv, bn, relu)
class DecoderBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
skip_channels=0,
use_batchnorm=True,
):
super().__init__()
self.conv1 = Conv2dReLU(
in_channels + skip_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.conv2 = Conv2dReLU(
out_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
def forward(self, x, skip=None):
# print(x.shape,skip.shape)
if skip is not None:
x = torch.cat([x, skip], dim=1)
x = self.up(x)
x = self.conv1(x)
x = self.conv2(x)
return x
class SegmentationHead(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
super().__init__(conv2d, upsampling)
class DecoderCup(nn.Module):
def __init__(self):
super().__init__()
# self.config = config
head_channels = 512
self.conv_more = Conv2dReLU(
1024,
head_channels,
kernel_size=3,
padding=1,
use_batchnorm=True,
)
decoder_channels = (256,128,64,16)
in_channels = [head_channels] + list(decoder_channels[:-1])
out_channels = decoder_channels
# if self.config.n_skip != 0:
# skip_channels = self.config.skip_channels
# for i in range(4-self.config.n_skip): # re-select the skip channels according to n_skip
# skip_channels[3-i]=0
# else:
# skip_channels=[0,0,0,0]
skip_channels=[512,256,128,64]
self.conv_feature1 = Conv2dReLU(1024,skip_channels[0],kernel_size=3,padding=1,use_batchnorm=True)
self.conv_feature2 = Conv2dReLU(1024,skip_channels[1],kernel_size=3,padding=1,use_batchnorm=True)
self.up2 = nn.UpsamplingBilinear2d(scale_factor=2)
self.conv_feature3 = Conv2dReLU(1024,skip_channels[2],kernel_size=3,padding=1,use_batchnorm=True)
self.up3 = nn.UpsamplingBilinear2d(scale_factor=4)
self.conv_feature4 = Conv2dReLU(1024,skip_channels[3],kernel_size=3,padding=1,use_batchnorm=True)
self.up4 = nn.UpsamplingBilinear2d(scale_factor=8)
# skip_channels=[128,64,32,8]
blocks = [
DecoderBlock(in_ch, out_ch, sk_ch) for in_ch, out_ch, sk_ch in zip(in_channels, out_channels, skip_channels)
]
self.blocks = nn.ModuleList(blocks)
def TransShape(self,x,head_channels = 512,up=0):
B, n_patch, hidden = x.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
x = x.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, h, w)
if up==0:
x = self.conv_feature1(x)
elif up==1:
x = self.conv_feature2(x)
x = self.up2(x)
elif up==2:
x = self.conv_feature3(x)
x = self.up3(x)
elif up==3:
x = self.conv_feature4(x)
x = self.up4(x)
return x
def forward(self, hidden_states, features=None):
B, n_patch, hidden = hidden_states.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
x = hidden_states.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, h, w)
x = self.conv_more(x)
skip_channels=[512,256,128,64]
for i, decoder_block in enumerate(self.blocks):
if features is not None:
skip = self.TransShape(features[i],head_channels=skip_channels[i],up=i)
else:
skip = None
x = decoder_block(x, skip=skip)
return x
class MLAHead(nn.Module):
def __init__(self, mla_channels=256, mlahead_channels=128, norm_cfg=None):
super(MLAHead, self).__init__()
self.head2 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU(),
nn.Conv2d(
mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU())
self.head3 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU(),
nn.Conv2d(
mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU())
self.head4 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU(),
nn.Conv2d(
mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU())
self.head5 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU(),
nn.Conv2d(
mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(mlahead_channels), nn.ReLU())
def forward(self, mla_p2, mla_p3, mla_p4, mla_p5):
head2 = F.interpolate(self.head2(
mla_p2), (4*mla_p2.shape[-2],4*mla_p2.shape[-1]), mode='bilinear', align_corners=True)
head3 = F.interpolate(self.head3(
mla_p3), (4*mla_p3.shape[-2],4*mla_p3.shape[-1]), mode='bilinear', align_corners=True)
head4 = F.interpolate(self.head4(
mla_p4), (4*mla_p4.shape[-2],4*mla_p4.shape[-1]), mode='bilinear', align_corners=True)
head5 = F.interpolate(self.head5(
mla_p5), (4*mla_p5.shape[-2],4*mla_p5.shape[-1]), mode='bilinear', align_corners=True)
return torch.cat([head2, head3, head4, head5], dim=1)
class VIT_MLAHead(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=768, mla_channels=256, mlahead_channels=128, num_classes=6,
norm_layer=nn.BatchNorm2d, norm_cfg=None, **kwargs):
super(VIT_MLAHead, self).__init__(**kwargs)
self.img_size = img_size
self.norm_cfg = norm_cfg
self.mla_channels = mla_channels
self.BatchNorm = norm_layer
self.mlahead_channels = mlahead_channels
self.num_classes = num_classes
self.mlahead = MLAHead(mla_channels=self.mla_channels,
mlahead_channels=self.mlahead_channels, norm_cfg=self.norm_cfg)
self.cls = nn.Conv2d(4 * self.mlahead_channels,
self.num_classes, 3, padding=1)
def forward(self, x1, x2, x3, x4, h=14, w=14, target_h=None, target_w=None):
B, n_patch, hidden = x1.size()
if h == w:
h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
# Reshape all feature maps
x1 = x1.permute(0, 2, 1).contiguous().view(B, hidden, h, w)
x2 = x2.permute(0, 2, 1).contiguous().view(B, hidden, h, w)
x3 = x3.permute(0, 2, 1).contiguous().view(B, hidden, h, w)
x4 = x4.permute(0, 2, 1).contiguous().view(B, hidden, h, w)
# Apply MLA head
x = self.mlahead(x1, x2, x3, x4)
x = self.cls(x)
# Calculate target size - if original image wasn't patch-size divisible
patch_size = 16 # assuming patch size of 16
if target_h is not None and target_w is not None:
target_size = (target_h, target_w)
else:
target_size = (h * patch_size, w * patch_size)
# Interpolate to target size
x = F.interpolate(x, size=target_size, mode='bilinear', align_corners=True)
return x
def mae_vit_small_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=6, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
# Replace with flexible patch embedding
model.patch_embed = FlexiblePatchEmbed(
img_size=kwargs.get('img_size', 224),
patch_size=16,
in_chans=kwargs.get('in_chans', 3),
embed_dim=768
)
return model
def vit_base_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
# Replace with flexible patch embedding
model.patch_embed = FlexiblePatchEmbed(
img_size=kwargs.get('img_size', 224),
patch_size=16,
in_chans=kwargs.get('in_chans', 3),
embed_dim=768
)
return model
def vit_large_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
# Replace with flexible patch embedding
model.patch_embed = FlexiblePatchEmbed(
img_size=kwargs.get('img_size', 224),
patch_size=16,
in_chans=kwargs.get('in_chans', 3),
embed_dim=1024
)
return model
def vit_huge_patch14(**kwargs):
model = VisionTransformer(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
# Replace with flexible patch embedding
model.patch_embed = FlexiblePatchEmbed(
img_size=kwargs.get('img_size', 224),
patch_size=14,
in_chans=kwargs.get('in_chans', 3),
embed_dim=1280
)
return model