# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import timm.models.vision_transformer import numpy as np from util.pos_embed import get_2d_sincos_pos_embed from util.variable_pos_embed import interpolate_pos_embed_variable class FlexiblePatchEmbed(nn.Module): """ 2D Image to Patch Embedding that handles variable input sizes """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, bias=True): super().__init__() self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.num_patches = (img_size // patch_size) ** 2 # default number of patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) def forward(self, x): B, C, H, W = x.shape # Calculate number of patches dynamically self.num_patches = (H // self.patch_size) * (W // self.patch_size) x = self.proj(x).flatten(2).transpose(1, 2) # BCHW -> BNC return x class VisionTransformer(timm.models.vision_transformer.VisionTransformer): """ Vision Transformer with support for variable image sizes and adaptive positional embeddings """ def __init__(self, global_pool=False, **kwargs): super(VisionTransformer, self).__init__(**kwargs) self.global_pool = global_pool self.decoder = VIT_MLAHead(mla_channels=self.embed_dim,num_classes=self.num_classes) self.segmentation_head = SegmentationHead( in_channels=16, out_channels=self.num_classes, kernel_size=3, ) if self.global_pool: norm_layer = kwargs['norm_layer'] embed_dim = kwargs['embed_dim'] self.fc_norm = norm_layer(embed_dim) del self.norm # remove the original norm def interpolate_pos_encoding(self, x, h, w): """ Interpolate positional embeddings for arbitrary input sizes """ npatch = x.shape[1] - 1 # subtract 1 for cls token N = self.pos_embed.shape[1] - 1 # original number of patches if npatch == N and h == w: return self.pos_embed # Use the new variable position embedding utility return interpolate_pos_embed_variable(self.pos_embed, h, w, cls_token=True) def forward_features(self, x): B, C, H, W = x.shape # Handle padding for non-16-divisible images patch_size = self.patch_embed.patch_size pad_h = (patch_size - H % patch_size) % patch_size pad_w = (patch_size - W % patch_size) % patch_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, pad_w, 0, pad_h), mode='reflect') H_padded, W_padded = H + pad_h, W + pad_w else: H_padded, W_padded = H, W # Extract patches x = self.patch_embed(x) _H, _W = H_padded // patch_size, W_padded // patch_size # Add class token cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # Add interpolated positional embeddings pos_embed = self.interpolate_pos_encoding(x, _H, _W) x = x + pos_embed x = self.pos_drop(x) featureskip = [] featureskipnum = 1 for blk in self.blocks: x = blk(x) if featureskipnum % (len(self.blocks) // 4) == 0: featureskip.append(x[:, 1:, :]) # exclude cls token featureskipnum += 1 # Pass original dimensions for proper reconstruction x = self.decoder(featureskip[0], featureskip[1], featureskip[2], featureskip[3], h=_H, w=_W, target_h=H, target_w=W) return x def forward(self, x): x = self.forward_features(x) return x class Conv2dReLU(nn.Sequential): def __init__( self, in_channels, out_channels, kernel_size, padding=0, stride=1, use_batchnorm=True, ): conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=not (use_batchnorm), ) relu = nn.ReLU(inplace=True) bn = nn.BatchNorm2d(out_channels) super(Conv2dReLU, self).__init__(conv, bn, relu) class DecoderBlock(nn.Module): def __init__( self, in_channels, out_channels, skip_channels=0, use_batchnorm=True, ): super().__init__() self.conv1 = Conv2dReLU( in_channels + skip_channels, out_channels, kernel_size=3, padding=1, use_batchnorm=use_batchnorm, ) self.conv2 = Conv2dReLU( out_channels, out_channels, kernel_size=3, padding=1, use_batchnorm=use_batchnorm, ) self.up = nn.UpsamplingBilinear2d(scale_factor=2) def forward(self, x, skip=None): # print(x.shape,skip.shape) if skip is not None: x = torch.cat([x, skip], dim=1) x = self.up(x) x = self.conv1(x) x = self.conv2(x) return x class SegmentationHead(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1): conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2) upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity() super().__init__(conv2d, upsampling) class DecoderCup(nn.Module): def __init__(self): super().__init__() # self.config = config head_channels = 512 self.conv_more = Conv2dReLU( 1024, head_channels, kernel_size=3, padding=1, use_batchnorm=True, ) decoder_channels = (256,128,64,16) in_channels = [head_channels] + list(decoder_channels[:-1]) out_channels = decoder_channels # if self.config.n_skip != 0: # skip_channels = self.config.skip_channels # for i in range(4-self.config.n_skip): # re-select the skip channels according to n_skip # skip_channels[3-i]=0 # else: # skip_channels=[0,0,0,0] skip_channels=[512,256,128,64] self.conv_feature1 = Conv2dReLU(1024,skip_channels[0],kernel_size=3,padding=1,use_batchnorm=True) self.conv_feature2 = Conv2dReLU(1024,skip_channels[1],kernel_size=3,padding=1,use_batchnorm=True) self.up2 = nn.UpsamplingBilinear2d(scale_factor=2) self.conv_feature3 = Conv2dReLU(1024,skip_channels[2],kernel_size=3,padding=1,use_batchnorm=True) self.up3 = nn.UpsamplingBilinear2d(scale_factor=4) self.conv_feature4 = Conv2dReLU(1024,skip_channels[3],kernel_size=3,padding=1,use_batchnorm=True) self.up4 = nn.UpsamplingBilinear2d(scale_factor=8) # skip_channels=[128,64,32,8] blocks = [ DecoderBlock(in_ch, out_ch, sk_ch) for in_ch, out_ch, sk_ch in zip(in_channels, out_channels, skip_channels) ] self.blocks = nn.ModuleList(blocks) def TransShape(self,x,head_channels = 512,up=0): B, n_patch, hidden = x.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden) h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch)) x = x.permute(0, 2, 1) x = x.contiguous().view(B, hidden, h, w) if up==0: x = self.conv_feature1(x) elif up==1: x = self.conv_feature2(x) x = self.up2(x) elif up==2: x = self.conv_feature3(x) x = self.up3(x) elif up==3: x = self.conv_feature4(x) x = self.up4(x) return x def forward(self, hidden_states, features=None): B, n_patch, hidden = hidden_states.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden) h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch)) x = hidden_states.permute(0, 2, 1) x = x.contiguous().view(B, hidden, h, w) x = self.conv_more(x) skip_channels=[512,256,128,64] for i, decoder_block in enumerate(self.blocks): if features is not None: skip = self.TransShape(features[i],head_channels=skip_channels[i],up=i) else: skip = None x = decoder_block(x, skip=skip) return x class MLAHead(nn.Module): def __init__(self, mla_channels=256, mlahead_channels=128, norm_cfg=None): super(MLAHead, self).__init__() self.head2 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU(), nn.Conv2d( mlahead_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU()) self.head3 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU(), nn.Conv2d( mlahead_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU()) self.head4 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU(), nn.Conv2d( mlahead_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU()) self.head5 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU(), nn.Conv2d( mlahead_channels, mlahead_channels, 3, padding=1, bias=False), nn.BatchNorm2d(mlahead_channels), nn.ReLU()) def forward(self, mla_p2, mla_p3, mla_p4, mla_p5): head2 = F.interpolate(self.head2( mla_p2), (4*mla_p2.shape[-2],4*mla_p2.shape[-1]), mode='bilinear', align_corners=True) head3 = F.interpolate(self.head3( mla_p3), (4*mla_p3.shape[-2],4*mla_p3.shape[-1]), mode='bilinear', align_corners=True) head4 = F.interpolate(self.head4( mla_p4), (4*mla_p4.shape[-2],4*mla_p4.shape[-1]), mode='bilinear', align_corners=True) head5 = F.interpolate(self.head5( mla_p5), (4*mla_p5.shape[-2],4*mla_p5.shape[-1]), mode='bilinear', align_corners=True) return torch.cat([head2, head3, head4, head5], dim=1) class VIT_MLAHead(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=768, mla_channels=256, mlahead_channels=128, num_classes=6, norm_layer=nn.BatchNorm2d, norm_cfg=None, **kwargs): super(VIT_MLAHead, self).__init__(**kwargs) self.img_size = img_size self.norm_cfg = norm_cfg self.mla_channels = mla_channels self.BatchNorm = norm_layer self.mlahead_channels = mlahead_channels self.num_classes = num_classes self.mlahead = MLAHead(mla_channels=self.mla_channels, mlahead_channels=self.mlahead_channels, norm_cfg=self.norm_cfg) self.cls = nn.Conv2d(4 * self.mlahead_channels, self.num_classes, 3, padding=1) def forward(self, x1, x2, x3, x4, h=14, w=14, target_h=None, target_w=None): B, n_patch, hidden = x1.size() if h == w: h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch)) # Reshape all feature maps x1 = x1.permute(0, 2, 1).contiguous().view(B, hidden, h, w) x2 = x2.permute(0, 2, 1).contiguous().view(B, hidden, h, w) x3 = x3.permute(0, 2, 1).contiguous().view(B, hidden, h, w) x4 = x4.permute(0, 2, 1).contiguous().view(B, hidden, h, w) # Apply MLA head x = self.mlahead(x1, x2, x3, x4) x = self.cls(x) # Calculate target size - if original image wasn't patch-size divisible patch_size = 16 # assuming patch size of 16 if target_h is not None and target_w is not None: target_size = (target_h, target_w) else: target_size = (h * patch_size, w * patch_size) # Interpolate to target size x = F.interpolate(x, size=target_size, mode='bilinear', align_corners=True) return x def mae_vit_small_patch16(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=6, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) # Replace with flexible patch embedding model.patch_embed = FlexiblePatchEmbed( img_size=kwargs.get('img_size', 224), patch_size=16, in_chans=kwargs.get('in_chans', 3), embed_dim=768 ) return model def vit_base_patch16(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) # Replace with flexible patch embedding model.patch_embed = FlexiblePatchEmbed( img_size=kwargs.get('img_size', 224), patch_size=16, in_chans=kwargs.get('in_chans', 3), embed_dim=768 ) return model def vit_large_patch16(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) # Replace with flexible patch embedding model.patch_embed = FlexiblePatchEmbed( img_size=kwargs.get('img_size', 224), patch_size=16, in_chans=kwargs.get('in_chans', 3), embed_dim=1024 ) return model def vit_huge_patch14(**kwargs): model = VisionTransformer( patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) # Replace with flexible patch embedding model.patch_embed = FlexiblePatchEmbed( img_size=kwargs.get('img_size', 224), patch_size=14, in_chans=kwargs.get('in_chans', 3), embed_dim=1280 ) return model