FasterLivepotrait / webui.py
AndroidGuy's picture
Add files with Git LFS support
8dc9718
# coding: utf-8
"""
The entrance of the gradio
"""
import os
import pdb
import gradio as gr
import os.path as osp
from omegaconf import OmegaConf
from src.pipelines.gradio_live_portrait_pipeline import GradioLivePortraitPipeline
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
import argparse
parser = argparse.ArgumentParser(description='Faster Live Portrait Pipeline')
parser.add_argument('--mode', required=False, type=str, default="onnx")
parser.add_argument('--use_mp', action='store_true', help='use mediapipe or not')
parser.add_argument(
"--host_ip", type=str, default="127.0.0.1", help="host ip"
)
parser.add_argument("--port", type=int, default=9870, help="server port")
args, unknown = parser.parse_known_args()
if args.mode == "onnx":
cfg_path = "configs/onnx_mp_infer.yaml" if args.use_mp else "configs/onnx_infer.yaml"
else:
cfg_path = "configs/trt_mp_infer.yaml" if args.use_mp else "configs/trt_infer.yaml"
infer_cfg = OmegaConf.load(cfg_path)
gradio_pipeline = GradioLivePortraitPipeline(infer_cfg)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
def change_animal_model(is_animal):
global gradio_pipeline
gradio_pipeline.clean_models()
gradio_pipeline.init_models(is_animal=is_animal)
# assets
title_md = "assets/gradio/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(format="png", type="numpy")
output_image_paste_back = gr.Image(format="png", type="numpy")
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")]), js=js_func) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio/gradio_description_upload.md"))
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("๐Ÿ–ผ๏ธ Source Image") as tab_image:
with gr.Accordion(open=True, label="Source Image"):
source_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[source_image_input],
cache_examples=False,
)
with gr.TabItem("๐ŸŽž๏ธ Source Video") as tab_video:
with gr.Accordion(open=True, label="Source Video"):
source_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d9.mp4")],
[osp.join(example_video_dir, "d10.mp4")],
[osp.join(example_video_dir, "d11.mp4")],
[osp.join(example_video_dir, "d12.mp4")],
[osp.join(example_video_dir, "d13.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
],
inputs=[source_video_input],
cache_examples=False,
)
tab_selection = gr.Textbox(visible=False)
tab_image.select(lambda: "Image", None, tab_selection)
tab_video.select(lambda: "Video", None, tab_selection)
with gr.Accordion(open=True, label="Cropping Options for Source Image or Video"):
with gr.Row():
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Column():
with gr.Tabs():
with gr.TabItem("๐ŸŽž๏ธ Driving Video") as v_tab_video:
with gr.Accordion(open=True, label="Driving Video"):
driving_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d9.mp4")],
[osp.join(example_video_dir, "d10.mp4")],
[osp.join(example_video_dir, "d11.mp4")],
[osp.join(example_video_dir, "d12.mp4")],
[osp.join(example_video_dir, "d13.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
],
inputs=[driving_video_input],
cache_examples=False,
)
with gr.TabItem("๐Ÿ–ผ๏ธ Driving Image") as v_tab_image:
with gr.Accordion(open=True, label="Driving Image"):
driving_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[driving_image_input],
cache_examples=False,
)
with gr.TabItem("๐Ÿ“ Driving Pickle") as v_tab_pickle:
with gr.Accordion(open=True, label="Driving Pickle"):
driving_pickle_input = gr.File(type="filepath", file_types=[".pkl"])
gr.Examples(
examples=[
[osp.join(example_video_dir, "d2.pkl")],
[osp.join(example_video_dir, "d8.pkl")],
],
inputs=[driving_pickle_input],
cache_examples=False,
)
with gr.TabItem("๐ŸŽต Driving Audio") as v_tab_audio:
with gr.Accordion(open=True, label="Driving Audio"):
driving_audio_input = gr.Audio(
value=None,
type="filepath",
interactive=True,
show_label=False,
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
)
gr.Examples(
examples=[
[osp.join(example_video_dir, "a-01.wav")],
],
inputs=[driving_audio_input],
cache_examples=False,
)
with gr.TabItem("๐Ÿ“„Driving Text") as v_tab_text:
with gr.Accordion(open=True, label="Driving Text"):
driving_text_input = gr.Textbox(value="Hi, I am created by Faster LivePortrait!",
label="Driving Text")
voice_dir = "checkpoints/Kokoro-82M/voices/"
voice_names = [os.path.splitext(vname)[0] for vname in os.listdir(voice_dir) if vname.endswith(".pt")]
voice_name = gr.Dropdown(
choices=voice_names, value='af_heart', label="Voice Name")
v_tab_selection = gr.Textbox(value="Video", visible=False)
v_tab_video.select(lambda: "Video", None, v_tab_selection)
v_tab_image.select(lambda: "Image", None, v_tab_selection)
v_tab_pickle.select(lambda: "Pickle", None, v_tab_selection)
v_tab_audio.select(lambda: "Audio", None, v_tab_selection)
v_tab_text.select(lambda: "Text", None, v_tab_selection)
# with gr.Accordion(open=False, label="Animation Instructions"):
# gr.Markdown(load_description("assets/gradio/gradio_description_animation.md"))
with gr.Accordion(open=True, label="Cropping Options for Driving Video"):
with gr.Row():
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)")
scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8,
maximum=3.2, step=0.05)
vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5,
maximum=0.5, step=0.01)
vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5,
maximum=0.5, step=0.01)
with gr.Row():
with gr.Accordion(open=True, label="Animation Options"):
with gr.Row():
flag_relative_input = gr.Checkbox(value=False, label="relative motion")
flag_stitching = gr.Checkbox(value=True, label="stitching")
driving_multiplier = gr.Number(value=1.0, label="driving multiplier", minimum=0.0, maximum=2.0,
step=0.02)
cfg_scale = gr.Number(value=4.0, label="cfg_scale", minimum=0.0, maximum=10.0, step=0.5)
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
animation_region = gr.Radio(["exp", "pose", "lip", "eyes", "all"], value="all",
label="animation region")
flag_video_editing_head_rotation = gr.Checkbox(value=False, label="relative head rotation (v2v)")
driving_smooth_observation_variance = gr.Number(value=1e-7, label="motion smooth strength (v2v)",
minimum=1e-11, maximum=1e-2, step=1e-8)
flag_is_animal = gr.Checkbox(value=False, label="is_animal")
gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md"))
with gr.Row():
process_button_animation = gr.Button("๐Ÿš€ Animate", variant="primary")
with gr.Column():
with gr.Row():
with gr.Column():
output_video_i2v = gr.Video(autoplay=False, label="The animated video in the original image space")
with gr.Column():
output_video_concat_i2v = gr.Video(autoplay=False, label="The animated video")
with gr.Row():
with gr.Column():
output_image_i2i = gr.Image(format="png", type="numpy",
label="The animated image in the original image space",
visible=False)
with gr.Column():
output_image_concat_i2i = gr.Image(format="png", type="numpy", label="The animated image",
visible=False)
with gr.Row():
process_button_reset = gr.ClearButton(
[source_image_input, source_video_input, driving_pickle_input, driving_video_input,
driving_image_input, output_video_i2v, output_video_concat_i2v, output_image_i2i, output_image_concat_i2i],
value="๐Ÿงน Clear")
# Retargeting
gr.Markdown(load_description("assets/gradio/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
process_button_retargeting = gr.Button("๐Ÿš— Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="๐Ÿงน Clear"
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_image_paste_back.render()
flag_is_animal.change(change_animal_model, inputs=[flag_is_animal])
# binding functions for buttons
process_button_retargeting.click(
# fn=gradio_pipeline.execute_image,
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
source_video_input,
driving_video_input,
driving_image_input,
driving_pickle_input,
driving_audio_input,
driving_text_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
driving_multiplier,
flag_stitching,
flag_crop_driving_video_input,
flag_video_editing_head_rotation,
flag_is_animal,
animation_region,
scale,
vx_ratio,
vy_ratio,
scale_crop_driving_video,
vx_ratio_crop_driving_video,
vy_ratio_crop_driving_video,
driving_smooth_observation_variance,
tab_selection,
v_tab_selection,
cfg_scale,
voice_name
],
outputs=[output_video_i2v, output_video_i2v, output_video_concat_i2v, output_video_concat_i2v,
output_image_i2i, output_image_i2i, output_image_concat_i2i, output_image_concat_i2i],
show_progress=True
)
if __name__ == '__main__':
demo.launch(
server_port=args.port,
share=False,
server_name=args.host_ip
)