Weak-Cube-RCNN / VisualiseGT.py
AndreasLH's picture
init
db3da1e
from pycocotools.coco import COCO
import os
import random
from functools import reduce
from io import StringIO
from detectron2.utils.visualizer import Visualizer
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
from cubercnn import data, util, vis
from cubercnn.config import get_cfg_defaults
from cubercnn.data.build import (build_detection_test_loader,
build_detection_train_loader)
from cubercnn.data.dataset_mapper import DatasetMapper3D
from cubercnn.data.datasets import load_omni3d_json, simple_register
from detectron2.config import get_cfg
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures.boxes import BoxMode
from detectron2.utils.logger import setup_logger
color = '#384860'
second_color = '#97a6c4'
def load_gt(dataset='SUNRGBD', mode='test', single_im=True, filter=False, img_idx=150):
# we can do this block of code to get the categories reduced number of categories in the sunrgbd dataset as there normally is 83 categories, however we only work with 38.
config_file = 'configs/Base_Omni3D.yaml'
if filter:
cfg, filter_settings = get_config_and_filter_settings(config_file)
else:
filter_settings = None
if mode == 'test':
dataset_paths_to_json = ['datasets/Omni3D/'+dataset+'_test.json']
elif mode == 'train':
dataset_paths_to_json = ['datasets/Omni3D/'+dataset+'_train.json']
# Get Image and annotations
try:
dataset = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
except:
print('Dataset does not exist or is not in the correct format!')
exit()
imgIds = dataset.getImgIds()
imgs = dataset.loadImgs(imgIds)
if single_im:
# img = random.choice(imgs)
# 730 and 150 are used in the report
img = imgs[img_idx]
annIds = dataset.getAnnIds(imgIds=img['id'])
else:
# get all annotations
img = imgs
annIds = dataset.getAnnIds()
anns = dataset.loadAnns(annIds)
# Extract necessary annotations
R_cams = []
center_cams = []
dimensions_all = []
cats = []
bboxes = []
for instance in anns:
if 'bbox2D_tight' in instance and instance['bbox2D_tight'][0] != -1:
bboxes.append(instance['bbox2D_tight']) # boxes are XYXY_ABS by default
elif 'bbox2D_trunc' in instance and not np.all([val==-1 for val in instance['bbox2D_trunc']]):
bboxes.append(instance['bbox2D_trunc']) # boxes are XYXY_ABS by default
elif 'bbox2D_proj' in instance:
bboxes.append(instance['bbox2D_proj']) # boxes are XYXY_ABS by default
else:
continue
R_cams.append(instance['R_cam'])
center_cams.append(instance['center_cam'])
dimensions_all.append(instance['dimensions'])
cats.append(instance['category_name'])
return img, R_cams, center_cams, dimensions_all, cats, bboxes
def plot_scene(image_path, output_dir, center_cams, dimensions_all, Rs, K, cats, bboxes):
# TODO: currently this function does not filter out invalid annotations, but it should have the option to do so.
# Compute meshes
meshes = []
meshes_text = []
for idx, (center_cam, dimensions, pose, cat) in enumerate(zip(
center_cams, dimensions_all, Rs, cats
)):
bbox3D = center_cam + dimensions
meshes_text.append('{}'.format(cat))
color = [c/255.0 for c in util.get_color(idx)]
box_mesh = util.mesh_cuboid(bbox3D, pose, color=color)
meshes.append(box_mesh)
image_name = util.file_parts(image_path)[1]
print('File: {} with {} dets'.format(image_name, len(meshes)))
np.random.seed(0)
colors = [np.concatenate([np.random.random(3), np.array([0.6])], axis=0) for _ in range(len(meshes))]
# Plot
image = util.imread('datasets/'+image_path)
if len(meshes) > 0:
im_drawn_rgb, im_topdown, _ = vis.draw_scene_view(image, np.array(K), meshes, colors=colors, text=meshes_text, scale=image.shape[0], blend_weight=0.5, blend_weight_overlay=0.85)
if False:
im_concat = np.concatenate((im_drawn_rgb, im_topdown), axis=1)
vis.imshow(im_concat)
util.imwrite(im_drawn_rgb, os.path.join(output_dir, image_name+'_boxes.jpg'))
util.imwrite(im_topdown, os.path.join(output_dir, image_name+'_novel.jpg'))
v_pred = Visualizer(image, None)
#bboxes = [[320, 150, 560, 340]] # low loss
#bboxes = [[350, 220, 440, 290]] # high loss
#bboxes = [[340, 163, 540, 297]] # fail loss
v_pred = v_pred.overlay_instances(boxes=np.array(bboxes), assigned_colors=colors)#[np.array([0.5,0,0.5])])#colors)
util.imwrite(v_pred.get_image(), os.path.join(output_dir, image_name+'_pred_boxes.jpg'))
#im_drawn_rgb, im_topdown, _ = vis.draw_scene_view(v_pred.get_image(), np.array(K), meshes, colors=colors, text=meshes_text, scale=image.shape[0], blend_weight=0.5, blend_weight_overlay=0.85)
#util.imwrite(im_drawn_rgb, os.path.join(output_dir, image_name+'_boxes_with_2d.jpg'))
else:
print('No meshes')
util.imwrite(image, os.path.join(output_dir, image_name+'_boxes.jpg'))
def show_data(dataset, filter_invalid=False, output_dir='output/playground'):
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, filter=filter_invalid)
# Create Output Directory
util.mkdir_if_missing(output_dir)
plot_scene(image['file_path'], output_dir, center_cams, dimensions_all, Rs, image['K'], cats, bboxes)
def category_distribution(dataset):
'''Plot a histogram of the category distribution in the dataset.'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
config_file = 'configs/Base_Omni3D.yaml'
cfg, filter_settings = get_config_and_filter_settings(config_file)
annotation_file = 'datasets/Omni3D/SUNRGBD_train.json'
coco_api = COCO(annotation_file)
meta = MetadataCatalog.get('SUNRGBD')
cat_ids = sorted(coco_api.getCatIds(filter_settings['category_names']))
cats_sun = coco_api.loadCats(cat_ids)
thing_classes = [c["name"] for c in sorted(cats_sun, key=lambda x: x["id"])]
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of categories
cats_all = cats + cats_t
# cats_unique = list(set(cats_all))
cats_unique = thing_classes
print('cats unique: ', len(cats_unique))
# make dict with count of each category
cats_count = {cat: cats_all.count(cat) for cat in cats_unique}
cats_sorted = dict(sorted(cats_count.items(), key=lambda x: x[1], reverse=True))
plt.figure(figsize=(14,5))
plt.bar(cats_sorted.keys(), cats_sorted.values())
plt.xticks(rotation=60, size=9)
plt.title('Category Distribution')
plt.savefig(os.path.join(output_dir, 'category_distribution.png'),dpi=300, bbox_inches='tight')
plt.close()
return cats_sorted
def spatial_statistics(dataset):
'''Compute spatial statistics of the dataset.
wanted to reproduce fig. 7 from the omni3D paper
however, we must standardise the images for it to work
'''
# Load Image and Ground
# this function filters out invalid images if there are no valid annotations in the image
# annnotations in each image can also be marked as is_ignore => True
image_root = 'datasets'
cfg, filter_settings = get_config_and_filter_settings()
dataset_names = ['SUNRGBD_train','SUNRGBD_test','SUNRGBD_val']
output_dir = 'output/figures/' + dataset
# this is almost the same as the simple_register function, but it also stores the model metadata
# which is needed for the load_omni3d_json function
data.register_and_store_model_metadata(None, output_dir, filter_settings=filter_settings)
data_dicts = []
for dataset_name in dataset_names:
json_file = 'datasets/Omni3D/'+dataset_name+'.json'
data_dict = load_omni3d_json(json_file, image_root, dataset_name, filter_settings, filter_empty=True)
data_dicts.extend(data_dict)
# standardise the images to a fixed size
# and map the annotations to the standardised images
std_image_size = (480//4, 640//4)
tot_outliers = 0
img = np.zeros(std_image_size)
for img_dict in data_dicts:
original_width = img_dict['width']
original_height = img_dict['height']
# Calculate the scale factor for resizing
scale_x = std_image_size[1] / original_width
scale_y = std_image_size[0] / original_height
# Update the image size in the annotation
img_dict['width'] = std_image_size[1]
img_dict['height'] = std_image_size[0]
for anno in img_dict['annotations']:
if not anno['ignore']:
# Update the 2D box coordinates (boxes are XYWH)
anno['bbox2D_tight'][0] *= scale_x
anno['bbox2D_tight'][1] *= scale_y
anno['bbox2D_tight'][2] *= scale_x
anno['bbox2D_tight'][3] *= scale_y
# get the centerpoint of the annotation as (x, y)
# x0, y0, x1, y1 = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
x0, y0, x1, y1 = anno['bbox2D_tight']
x_m, y_m = int((x0+x1)/2), int((y0+y1)/2)
if x_m >= std_image_size[1] or x_m < 0:
# print(f'x out of line {x_m}')
tot_outliers += 1
elif y_m >= std_image_size[0] or y_m < 0:
# print(f'y out of line {y_m}')
tot_outliers += 1
else:
img[y_m, x_m] += 1
else:
# Remove the annotation if it is marked as ignore
img_dict['annotations'].remove(anno)
print('num center points outside frame: ', tot_outliers)
img = img/img.max()
# this point is so large that all the points become invisible, so I remove it.
img[0,0] = 0.00
img = img/img.max()
plt.figure()
plt.imshow(img, cmap='gray_r', vmin=0, vmax=1)
plt.xticks([]); plt.yticks([])
plt.title('Histogram of 2D box centre points')
# plt.box(False)
plt.savefig(os.path.join(output_dir, '2d_histogram.png'),dpi=300, bbox_inches='tight')
plt.close()
return
def AP_vs_no_of_classes(dataset, files:list=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).rename(columns={'AP3D':f'{model_name} AP3D', 'AP2D':f'{model_name} AP2D'})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN AP3D', ascending=False)
cats = category_distribution(dataset)
df.sort_values(by='category', inplace=True)
cats = dict(sorted(cats.items()))
merged_df = pd.merge(df.reset_index(), pd.DataFrame(cats.values(), columns=['cats']), left_index=True, right_index=True)
merged_df = merged_df.sort_values(by='cats')
merged_df = merged_df.drop('index',axis=1)
merged_df = merged_df.reset_index(drop=True)
fig, ax = plt.subplots(figsize=(12,8))
for model_name in model_names:
if model_name == 'Base Cube R-CNN':
scale = 114
else:
scale = 10.15
# convert the annotation time to hours
time = merged_df['cats']*scale / 60 / 60
ax.scatter(time, merged_df[f'{model_name} AP3D'].values, s=merged_df[f'{model_name} AP2D'].values*2, alpha=0.5, label=model_name)
for i, txt in enumerate(merged_df['category']):
ax.text(time[i], merged_df[f'{model_name} AP3D'].values[i], txt, fontsize=merged_df[f'{model_name} AP3D'].values[i]*0.3+3)
correlation_coef = np.corrcoef(time, merged_df[f'{model_name} AP3D'].values)[0, 1]
line_fit = np.polyfit(time, merged_df[f'{model_name} AP3D'].values, 1)
# plot the line of best fit
ax.plot(time, np.poly1d(line_fit)(time), linestyle='--',alpha=0.5, label=f'Linear fit (R={correlation_coef:.2f})')
# Set labels and title
ax.set_xlabel('Annotation time (h)')
ax.set_ylabel('AP3D')
ax.set_xscale('log')
ax.set_title('AP3D vs class-wise annotation time')
ax.legend(title='AP3D scaled by AP2D')
# Save the plot
plt.savefig('output/figures/'+dataset+'/AP_vs_no_of_classes_all.png', dpi=300, bbox_inches='tight')
plt.close()
return
def AP3D_vs_AP2D(dataset, mode = 'standard', files=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).rename(columns={'AP3D':f'{model_name} AP3D', 'AP2D':f'{model_name} AP2D'})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN AP3D', ascending=False)
cats = category_distribution(dataset)
df.sort_values(by='category', inplace=True)
cats = dict(sorted(cats.items()))
merged_df = pd.merge(df.reset_index(), pd.DataFrame(cats.values(), columns=['cats']), left_index=True, right_index=True)
merged_df = merged_df.sort_values(by='cats')
merged_df = merged_df.drop('index',axis=1)
merged_df = merged_df.reset_index(drop=True)
# mode = 'standard' # 'log'
fig, ax = plt.subplots(figsize=(12,8))
for model_name in model_names:
if mode == 'standard': s=merged_df[f'{model_name} AP2D'].values*2
else: s = None
# we have to add 0.001 to the values to avoid log(0) errors
ax.scatter(merged_df[f'{model_name} AP2D'].values+0.001, merged_df[f'{model_name} AP3D'].values+0.001, alpha=0.5, label=model_name, s=s)
for i, txt in enumerate(merged_df['category']):
if mode == 'standard': fontsize=merged_df[f'{model_name} AP3D'].values[i]*0.3+3
else: fontsize=7
ax.text(merged_df[f'{model_name} AP2D'].values[i]+0.001, merged_df[f'{model_name} AP3D'].values[i]+0.001, txt,fontsize=fontsize)
# plot average line
ax.plot((0, 70), (0, 70), linestyle='--', color=color, alpha=0.3, label=f'AP2D=AP3D')
# Set labels and title
if mode == 'log':
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('AP2D')
ax.set_ylabel('AP3D')
# ax.set_xlim(0.1, 75); ax.set_ylim(0.1, 75)
ax.set_title('AP in 3D vs AP in 2D')
ax.legend()
# if mode == 'log':
# # for some obscure reason the log plot fails to save
# plt.show()
# # Save the plot
# else:
plt.savefig('output/figures/'+dataset+f'/AP3D_vs_AP2D_all_{mode}.png', dpi=300, bbox_inches='tight')
plt.close()
return
def search_file_backwards(file_path:str, target_line:str) -> pd.DataFrame:
'''Search a file backwards for a target line and return the table of the performance of the model. The point of this is to parse the part of the log file that looks like this
| category | AP2D | AP3D | category | AP2D | AP3D | category | AP2D | AP3D |
|:----------:|:--------|:----------|:-----------:|:---------|:---------|:------------:|:----------|:-----------|
| chair | 45.9374 | 53.4913 | table | 34.5982 | 39.7769 | cabinet | 16.3693 | 14.0878 |
| lamp | 24.8081 | 7.67653 | books | 0.928978 | 0.599711 | sofa | 49.2354 | 57.9649 |
...
To a pandas DataFrame that has 3 columns: category, AP2D, AP3D'''
import re
with open(file_path, 'r') as file:
lines = file.readlines()
for i, line in enumerate(reversed(lines)):
is_found = re.search(f'.*{target_line}$', line)
if is_found:
table = lines[-i:-i+15]
tab_as_str= ' '.join(table)
# i know this is really ugly
df = pd.read_csv( StringIO(tab_as_str.replace(' ', '')), # Get rid of whitespaces
sep='|',).dropna(axis=1, how='all').drop(0)
# https://stackoverflow.com/a/65884212
df.columns = pd.MultiIndex.from_frame(df.columns.str.split('.', expand=True)
.to_frame().fillna('0'))
df = df.stack().reset_index(level=1, drop=True).reset_index().drop('index', axis=1)
df['AP3D'] = df['AP3D'].astype(float)
df['AP2D'] = df['AP2D'].astype(float)
return df
return None
def get_config_and_filter_settings(config_file='configs/Base_Omni3D.yaml'):
# we must load the config file to get the filter settings
cfg = get_cfg()
get_cfg_defaults(cfg)
cfg.merge_from_file(config_file)
# must setup logger to get info about filtered out annotations
setup_logger(output=cfg.OUTPUT_DIR, name="cubercnn")
filter_settings = data.get_filter_settings_from_cfg(cfg)
return cfg, filter_settings
def init_dataloader():
''' dataloader stuff.
currently not used anywhere, because I'm not sure what the difference between the omni3d dataset and load omni3D json functions are. this is a 3rd alternative to this. The train script calls something similar to this.'''
cfg, filter_settings = get_config_and_filter_settings()
dataset_names = ['SUNRGBD_train','SUNRGBD_val']
dataset_paths_to_json = ['datasets/Omni3D/'+dataset_name+'.json' for dataset_name in dataset_names]
for dataset_name in dataset_names:
simple_register(dataset_name, filter_settings, filter_empty=True)
# Get Image and annotations
datasets = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
infos = datasets.dataset['info']
dataset_id_to_unknown_cats = {}
possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
dataset_id_to_src = {}
for info in infos:
dataset_id = info['id']
known_category_training_ids = set()
if not dataset_id in dataset_id_to_src:
dataset_id_to_src[dataset_id] = info['source']
for id in info['known_category_ids']:
if id in dataset_id_to_contiguous_id:
known_category_training_ids.add(dataset_id_to_contiguous_id[id])
# determine and store the unknown categories.
unknown_categories = possible_categories - known_category_training_ids
dataset_id_to_unknown_cats[dataset_id] = unknown_categories
from detectron2 import data as d2data
NoOPaug = d2data.transforms.NoOpTransform()
# def NoOPaug(input):
# return input
# TODO: how to load in images without having them resized?
# data_mapper = DatasetMapper3D(cfg, augmentations=[NoOPaug], is_train=True)
data_mapper = DatasetMapper3D(cfg, is_train=True)
# test loader does resize images, like the train loader does
# this is the function that filters out the invalid annotations
data_loader = build_detection_train_loader(cfg, mapper=data_mapper, dataset_id_to_src=dataset_id_to_src, num_workers=1)
# data_loader = build_detection_test_loader(cfg, dataset_names[1], num_workers=1)
# this is a detectron 2 thing that we just have to do
data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats
for item in data_loader:
print(item)
def vol_over_cat(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of categories
cats_all = cats + cats_t
cats_unique = list(set(cats_all))
# Create dictionary with np.prod(dimensions) for each category
cats_vol = {cat: [] for cat in cats_unique}
for cat, dims in zip(cats, dimensions_all):
if np.prod(dims) > 0:
cats_vol[cat].append(np.prod(dims))
for cat, dims in zip(cats_t, dimensions_all_t):
if np.prod(dims) > 0:
cats_vol[cat].append(np.prod(dims))
# make dict with mean and std of each category
cats_mean = {cat: np.mean(cats_vol[cat]) for cat in cats_unique}
cats_error = {cat: np.std(cats_vol[cat]) for cat in cats_unique}
keys = np.array(list(cats_mean.keys()))
means = np.array(list(cats_mean.values()))
errors = np.array(list(cats_error.values()))
# Calculate Z-scores for 5th and 95th percentiles
from scipy.stats import norm
z_lower = norm.ppf(0.05)
z_upper = norm.ppf(0.95)
bounds = []
for mean, std in zip(means, errors):
# Calculate the lower and upper bounds of the interval
lower_bound = mean + z_lower * std
upper_bound = mean + z_upper * std
bounds.append((max(0,lower_bound), upper_bound))
plt.figure(figsize=(14,5))
for i, (mean, (lower_bound, upper_bound)) in enumerate(zip(means, bounds)):
plt.vlines(x=i, ymin=lower_bound, ymax=upper_bound, color='gray', linewidth=2)
plt.plot([i], [mean], marker='o', color=color)
plt.xticks(np.arange(len(keys)), keys, rotation=60, size=9)
plt.xlabel('Category')
plt.ylabel('Volume')
plt.title('Category Distribution')
plt.savefig(os.path.join(output_dir, 'volume_distribution.png'), dpi=300, bbox_inches='tight')
plt.close()
def gt_stats(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of centers
center_all = center_cams + center_cams_t
center_all = np.transpose(np.array(center_all))
# Filter -1 annotations
valid_columns = center_all[0] != -1
center_all = center_all[:,valid_columns]
x_label = ['x', 'y', 'z']
fig, axes = plt.subplots(1, len(center_all), figsize=(18, 5))
for i in range(len(center_all)):
axes[i].hist(center_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Center Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'center.png'), dpi=300, bbox_inches='tight')
plt.close()
# histogram of dimensions
dimensions_all = dimensions_all + dimensions_all_t
dimensions_all = np.transpose(np.array(dimensions_all))
# Filter -1 annotations
valid_columns = dimensions_all[0] != -1
dimensions_all = dimensions_all[:,valid_columns]
x_label = ['w', 'h', 'l']
fig, axes = plt.subplots(1, len(dimensions_all), figsize=(18, 5))
for i in range(len(dimensions_all)):
axes[i].hist(dimensions_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Dimensions Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'dimensions.png'), dpi=300, bbox_inches='tight')
plt.close()
def report_figures(dataset, filter_invalid=False, output_dir='output/report_images'):
# Create Output Directory
util.mkdir_if_missing(output_dir)
util.mkdir_if_missing(output_dir+'/low_green')
util.mkdir_if_missing(output_dir+'/high_green')
util.mkdir_if_missing(output_dir+'/fail_green')
util.mkdir_if_missing(output_dir+'/low_red')
util.mkdir_if_missing(output_dir+'/high_red')
util.mkdir_if_missing(output_dir+'/fail_red')
util.mkdir_if_missing(output_dir+'/low_blue')
util.mkdir_if_missing(output_dir+'/high_blue')
util.mkdir_if_missing(output_dir+'/fail_blue')
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, filter=filter_invalid, img_idx=352)
gt_center = center_cams[1:]
gt_dim = dimensions_all[1:]
gt_Rs = Rs[1:]
cats = cats[1:]
gt_bb = bboxes[1:]
# Make low loss boxes for IoU, ps. z and proj
center = gt_center[-1]
dim = gt_dim[-1]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/low_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make high loss boxes for IoU, ps. z and proj
center = [gt_center[-1][0],gt_center[-1][1],gt_center[-1][2]+3]
dim = gt_dim[-1]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/high_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make fail loss boxes for IoU, ps. z and proj
center = [gt_center[-1][0]-0.03,gt_center[-1][1],gt_center[-1][2]]
dim = [0.05,0.71,0.05]
R = util.euler2mat(np.array([0,0,45]))
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/fail_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make low loss boxes for range and seg
center = gt_center[0]
dim = gt_dim[0]
R = gt_Rs[0]
cat = cats[0]
bb = gt_bb[0]
plot_scene(image['file_path'], output_dir+'/low_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make high loss boxes for range and seg
center = [gt_center[0][0],gt_center[0][1]+0.3,gt_center[0][2]]
dim = [gt_dim[0][0]+1.5,gt_dim[0][1]-0.6,gt_dim[0][2]]
R = gt_Rs[0]
cat = cats[0]
bb = gt_bb[0]
plot_scene(image['file_path'], output_dir+'/high_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make fail loss boxes for range and seg
center = [gt_center[0][0]+0.25,gt_center[0][1],gt_center[0][2]]
dim = [gt_dim[0][0]+0.7,gt_dim[0][1],gt_dim[0][2]]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/fail_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make low loss boxes for dim, pose and align
center = gt_center[1:]
dim = [[gt_dim[1][0]*1.5,gt_dim[1][1],gt_dim[1][2]*1.5], gt_dim[2]]
R = gt_Rs[1:]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/low_blue', center, dim, R, image['K'], cat, bb)
# Make high loss boxes for dim, pose and align
center = gt_center[1:]
dim = gt_dim[1:]
R = [util.euler2mat(util.mat2euler(np.array(gt_Rs[1]))+[20,0,0]), util.euler2mat(util.mat2euler(np.array(gt_Rs[2]))+[-20,0,0])]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/high_blue', center, dim, R, image['K'], cat, bb)
# Make fail loss boxes for dim, pose and align
center = gt_center[1:]
dim = [[gt_dim[1][0],gt_dim[1][1],gt_dim[1][2]],[gt_dim[2][1],gt_dim[2][0],gt_dim[2][2]]]
R = [util.euler2mat(util.mat2euler(np.array(gt_Rs[1]))+[1,0,0]), util.euler2mat(util.mat2euler(np.array(gt_Rs[2]))+[1,0,0])]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/fail_blue', center, dim, R, image['K'], cat, bb)
return True
def gt_stats_in_terms_of_sigma(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of centers
center_all = center_cams + center_cams_t
center_all = np.transpose(np.array(center_all))
# Filter -1 annotations
valid_columns = center_all[0] != -1
center_all = center_all[:,valid_columns]
x_label = ['x', 'y', 'z']
fig, axes = plt.subplots(1, len(center_all), figsize=(18, 5))
for i in range(len(center_all)):
axes[i].hist(center_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Center Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'center.png'), dpi=300, bbox_inches='tight')
plt.close()
# histogram of dimensions
dimensions_all = dimensions_all + dimensions_all_t
dimensions_all = np.transpose(np.array(dimensions_all))
# Filter -1 annotations
valid_columns = dimensions_all[0] != -1
dimensions_all = dimensions_all[:,valid_columns]
x_label = ['w', 'h', 'l']
fig, axes = plt.subplots(1, len(dimensions_all), figsize=(18, 5))
for i in range(len(dimensions_all)):
axes[i].hist(dimensions_all[i], color=color, bins=20, density=True)
# Plot normal distribution
mu, sigma = np.mean(dimensions_all[i]), np.std(dimensions_all[i])
x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100)
axes[i].plot(x, stats.norm.pdf(x, mu, sigma))
y_lim = axes[i].get_ylim()[1]
axes[i].vlines(mu+sigma, 0, y_lim, linestyle='--', label='$\sigma$', color='gray')
axes[i].vlines(mu-sigma, 0, y_lim, linestyle='--', label='$\sigma$', color='gray')
axes[i].vlines(1.4, 0, y_lim, linestyle='--', color='red', label='pred')
if i != 0:
axes[i].plot((mu+sigma,1.4), (y_lim/2,y_lim/2), color='c', label='loss')
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('density')
# Set xticks in terms of sigma
xticks = [mu - 3 * sigma, mu - 2 * sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma, mu + 6 * sigma]
xticklabels = ['-3$\sigma$', '-2$\sigma$', '-$\sigma$', '0', '$\sigma$', '$2\sigma$', '$3\sigma$', '$4\sigma$', '$5\sigma$', '$6\sigma$']
axes[i].set_xticks(xticks)
axes[i].set_xticklabels(xticklabels)
axes[-1].legend()
fig.suptitle('Dimensions Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'dimensions_sigma.png'), dpi=300, bbox_inches='tight')
plt.close()
return True
def parallel_coordinate_plot(dataset='SUNRGBD', files:list=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
import plotly.graph_objects as go
# df with each model as a column and performance for each class as rows
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).drop(['AP2D'], axis=1).rename(columns={'AP3D':model_name})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN', ascending=False)
# encode each category as a number
df['category_num'] = list(reversed([i for i in range(len(df))]))
# https://plotly.com/python/parallel-coordinates-plot/
fig = go.Figure(data=
go.Parcoords(
line = dict(color = df.iloc[:, 1],
# colorscale = [[0,'purple'],[0.5,'lightseagreen'],[1,'gold']]),
colorscale = 'Viridis'),
visible = True,
dimensions = list([
dict(tickvals = df['category_num'],
ticktext = df['category'],
label = 'Categories', values = df['category_num']),
dict(range = [0,70],
constraintrange = [5,70],
label = model_names[0], values = df[model_names[0]]),
dict(range = [0,40],
label = model_names[2], values = df[model_names[2]]),
dict(range = [0,40],
label = model_names[4], values = df[model_names[4]]),
dict(range = [0,40],
label = model_names[1], values = df[model_names[1]]),
dict(range = [0,40],
label = model_names[3], values = df[model_names[3]]),
]),
)
)
fig.update_layout(
plot_bgcolor = 'white',
paper_bgcolor = 'white',
title={
'text': "AP3D per category for each model",
'y':0.96,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'},
margin=dict(l=65, r=25, t=80, b=5)
)
# pip install --upgrade "kaleido==0.1.*"
fig.write_image('output/figures/SUNRGBD/parallel_coordinate_plot.png', scale=3, format='png')
# fig.show()
if __name__ == '__main__':
# show_data('SUNRGBD', filter_invalid=False, output_dir='output/playground/no_filter') #{SUNRGBD,ARKitScenes,KITTI,nuScenes,Objectron,Hypersim}
# show_data('SUNRGBD', filter_invalid=True, output_dir='output/playground/with_filter') #{SUNRGBD,ARKitScenes,KITTI,nuScenes,Objectron,Hypersim}
# _ = category_distribution('SUNRGBD')
AP_vs_no_of_classes('SUNRGBD')
#spatial_statistics('SUNRGBD')
# AP3D_vs_AP2D('SUNRGBD')
# AP3D_vs_AP2D('SUNRGBD', mode='log')
# init_dataloader()
# vol_over_cat('SUNRGBD')
# gt_stats('SUNRGBD')
# gt_stats_in_terms_of_sigma('SUNRGBD')
#gt_stats('SUNRGBD')
# report_figures('SUNRGBD')
parallel_coordinate_plot()