AmmarFahmy
adding all files
105b369
import json
from typing import Optional, List, Iterator, Dict, Any, Union, Callable
from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import Function, FunctionCall
from phi.tools import Tool, Toolkit
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import get_function_call_for_tool_call
try:
from vertexai.generative_models import (
GenerativeModel,
GenerationResponse,
FunctionDeclaration,
Tool as GeminiTool,
Candidate as GenerationResponseCandidate,
Content as GenerationResponseContent,
Part as GenerationResponsePart,
)
except ImportError:
logger.error("`google-cloud-aiplatform` not installed")
raise
class Gemini(LLM):
name: str = "Gemini"
model: str = "gemini-1.0-pro-vision"
generation_config: Optional[Any] = None
safety_settings: Optional[Any] = None
function_declarations: Optional[List[FunctionDeclaration]] = None
generative_model_kwargs: Optional[Dict[str, Any]] = None
generative_model: Optional[GenerativeModel] = None
def conform_function_to_gemini(self, params: Dict[str, Any]) -> Dict[str, Any]:
fixed_parameters = {}
for k, v in params.items():
if k == "properties":
fixed_properties = {}
for prop_k, prop_v in v.items():
fixed_property_type = prop_v.get("type")
if isinstance(fixed_property_type, list):
if "null" in fixed_property_type:
fixed_property_type.remove("null")
fixed_properties[prop_k] = {"type": fixed_property_type[0]}
else:
fixed_properties[prop_k] = {"type": fixed_property_type}
fixed_parameters[k] = fixed_properties
else:
fixed_parameters[k] = v
return fixed_parameters
def add_tool(self, tool: Union[Tool, Toolkit, Callable, Dict, Function]) -> None:
if self.function_declarations is None:
self.function_declarations = []
# If the tool is a Tool or Dict, add it directly to the LLM
if isinstance(tool, Tool) or isinstance(tool, Dict):
logger.warning(f"Tool of type: {type(tool)} is not yet supported by Gemini.")
# If the tool is a Callable or Toolkit, add its functions to the LLM
elif callable(tool) or isinstance(tool, Toolkit) or isinstance(tool, Function):
if self.functions is None:
self.functions = {}
if isinstance(tool, Toolkit):
self.functions.update(tool.functions)
for func in tool.functions.values():
fd = FunctionDeclaration(
name=func.name,
description=func.description,
parameters=self.conform_function_to_gemini(func.parameters),
)
self.function_declarations.append(fd)
logger.debug(f"Functions from {tool.name} added to LLM.")
elif isinstance(tool, Function):
self.functions[tool.name] = tool
fd = FunctionDeclaration(
name=tool.name,
description=tool.description,
parameters=self.conform_function_to_gemini(tool.parameters),
)
self.function_declarations.append(fd)
logger.debug(f"Function {tool.name} added to LLM.")
elif callable(tool):
func = Function.from_callable(tool)
self.functions[func.name] = func
fd = FunctionDeclaration(
name=func.name,
description=func.description,
parameters=self.conform_function_to_gemini(func.parameters),
)
self.function_declarations.append(fd)
logger.debug(f"Function {func.name} added to LLM.")
@property
def api_kwargs(self) -> Dict[str, Any]:
kwargs: Dict[str, Any] = {}
if self.generation_config:
kwargs["generation_config"] = self.generation_config
if self.safety_settings:
kwargs["safety_settings"] = self.safety_settings
if self.generative_model_kwargs:
kwargs.update(self.generative_model_kwargs)
if self.function_declarations:
kwargs["tools"] = [GeminiTool(function_declarations=self.function_declarations)]
return kwargs
@property
def client(self) -> GenerativeModel:
if self.generative_model is None:
self.generative_model = GenerativeModel(model_name=self.model, **self.api_kwargs)
return self.generative_model
def to_dict(self) -> Dict[str, Any]:
_dict = super().to_dict()
if self.generation_config:
_dict["generation_config"] = self.generation_config
if self.safety_settings:
_dict["safety_settings"] = self.safety_settings
return _dict
def convert_messages_to_contents(self, messages: List[Message]) -> List[Any]:
_contents: List[Any] = []
for m in messages:
if isinstance(m.content, str):
_contents.append(m.content)
elif isinstance(m.content, list):
_contents.extend(m.content)
return _contents
def invoke(self, messages: List[Message]) -> GenerationResponse:
return self.client.generate_content(contents=self.convert_messages_to_contents(messages))
def invoke_stream(self, messages: List[Message]) -> Iterator[GenerationResponse]:
yield from self.client.generate_content(
contents=self.convert_messages_to_contents(messages),
stream=True,
)
def response(self, messages: List[Message]) -> str:
logger.debug("---------- VertexAI Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
response_timer = Timer()
response_timer.start()
response: GenerationResponse = self.invoke(messages=messages)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# logger.debug(f"VertexAI response type: {type(response)}")
# logger.debug(f"VertexAI response: {response}")
# -*- Parse response
response_candidates: List[GenerationResponseCandidate] = response.candidates
response_content: GenerationResponseContent = response_candidates[0].content
response_role = response_content.role
response_parts: List[GenerationResponsePart] = response_content.parts
response_text: Optional[str] = None
response_function_calls: Optional[List[Dict[str, Any]]] = None
if len(response_parts) > 1:
logger.warning("Multiple content parts are not yet supported.")
return "More than one response part found."
_part_dict = response_parts[0].to_dict()
if "text" in _part_dict:
response_text = _part_dict.get("text")
if "function_call" in _part_dict:
if response_function_calls is None:
response_function_calls = []
response_function_calls.append(
{
"type": "function",
"function": {
"name": _part_dict.get("function_call").get("name"),
"arguments": json.dumps(_part_dict.get("function_call").get("args")),
},
}
)
# -*- Create assistant message
assistant_message = Message(
role=response_role or "assistant",
content=response_text,
)
# -*- Add tool calls to assistant message
if response_function_calls is not None:
assistant_message.tool_calls = response_function_calls
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# TODO: Add token usage to metrics
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function calls
if assistant_message.tool_calls is not None:
final_response = ""
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_tool_call_id = tool_call.get("id")
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(
Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
)
continue
if _function_call.error is not None:
messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
final_response += f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
final_response += "\nRunning:"
for _f in function_calls_to_run:
final_response += f"\n - {_f.get_call_str()}"
final_response += "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run)
if len(function_call_results) > 0:
messages.extend(function_call_results)
# -*- Get new response using result of tool call
final_response += self.response(messages=messages)
return final_response
logger.debug("---------- VertexAI Response End ----------")
return assistant_message.get_content_string()
def response_stream(self, messages: List[Message]) -> Iterator[str]:
logger.debug("---------- VertexAI Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
response_role: Optional[str] = None
response_function_calls: Optional[List[Dict[str, Any]]] = None
assistant_message_content = ""
response_timer = Timer()
response_timer.start()
for response in self.invoke_stream(messages=messages):
# logger.debug(f"VertexAI response type: {type(response)}")
# logger.debug(f"VertexAI response: {response}")
# -*- Parse response
response_candidates: List[GenerationResponseCandidate] = response.candidates
response_content: GenerationResponseContent = response_candidates[0].content
if response_role is None:
response_role = response_content.role
response_parts: List[GenerationResponsePart] = response_content.parts
_part_dict = response_parts[0].to_dict()
# -*- Return text if present, otherwise get function call
if "text" in _part_dict:
response_text = _part_dict.get("text")
yield response_text
assistant_message_content += response_text
# -*- Parse function calls
if "function_call" in _part_dict:
if response_function_calls is None:
response_function_calls = []
response_function_calls.append(
{
"type": "function",
"function": {
"name": _part_dict.get("function_call").get("name"),
"arguments": json.dumps(_part_dict.get("function_call").get("args")),
},
}
)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Create assistant message
assistant_message = Message(role=response_role or "assistant")
# -*- Add content to assistant message
if assistant_message_content != "":
assistant_message.content = assistant_message_content
# -*- Add tool calls to assistant message
if response_function_calls is not None:
assistant_message.tool_calls = response_function_calls
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function calls
if assistant_message.tool_calls is not None:
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_tool_call_id = tool_call.get("id")
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(
Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
)
continue
if _function_call.error is not None:
messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
yield f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
yield "\nRunning:"
for _f in function_calls_to_run:
yield f"\n - {_f.get_call_str()}"
yield "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run)
if len(function_call_results) > 0:
messages.extend(function_call_results)
# -*- Yield new response using results of tool calls
yield from self.response_stream(messages=messages)
logger.debug("---------- VertexAI Response End ----------")