Spaces:
Sleeping
Sleeping
import numpy as np | |
import io | |
import os | |
import zipfile | |
import logging | |
import collections | |
import tempfile | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import gradio as gr | |
from langchain.document_loaders import PDFMinerPDFasHTMLLoader | |
from bs4 import BeautifulSoup | |
import re | |
from langchain.docstore.document import Document | |
import unstructured | |
from unstructured.partition.docx import partition_docx | |
from unstructured.partition.auto import partition | |
import tiktoken | |
#from transformers import AutoTokenizer | |
from pypdf import PdfReader | |
import pandas as pd | |
import requests | |
import json | |
MODEL = "thenlper/gte-base" | |
CHUNK_SIZE = 1500 | |
CHUNK_OVERLAP = 400 | |
embeddings = HuggingFaceEmbeddings( | |
model_name=MODEL, | |
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME") | |
) | |
# model_id = "mistralai/Mistral-7B-Instruct-v0.1" | |
# access_token = os.getenv("HUGGINGFACE_SPLITFILES_API_KEY") | |
# tokenizer = AutoTokenizer.from_pretrained( | |
# model_id, | |
# padding_side="left", | |
# token = access_token | |
# ) | |
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
text_splitter = CharacterTextSplitter( | |
separator = "\n", | |
chunk_size = CHUNK_SIZE, | |
chunk_overlap = CHUNK_OVERLAP, | |
length_function = len, | |
) | |
# def update_label(label1): | |
# return gr.update(choices=list(df.columns)) | |
def function_split_call(fi_input, dropdown, choice, chunk_size): | |
if choice == "Intelligent split": | |
nb_pages = chunk_size | |
return split_in_df(fi_input, nb_pages) | |
elif choice == "Non intelligent split": | |
return non_intelligent_split(fi_input, chunk_size) | |
else: | |
return split_by_keywords(fi_input,dropdown) | |
def change_textbox(dropdown,radio): | |
if len(dropdown) == 0 : | |
dropdown = ["introduction", "objective", "summary", "conclusion"] | |
if radio == "Intelligent split": | |
return gr.Dropdown(dropdown, visible=False), gr.Number(label="First pages to keep (0 for all)", value=2, interactive=True, visible=True) | |
elif radio == "Intelligent split by keywords": | |
return gr.Dropdown(dropdown, multiselect=True, visible=True, allow_custom_value=True), gr.Number(visible=False) | |
elif radio == "Non intelligent split": | |
return gr.Dropdown(dropdown, visible=False),gr.Number(label="Chunk size", value=1000, interactive=True, visible=True) | |
else: | |
return gr.Dropdown(dropdown, visible=False),gr.Number(visible=False) | |
def group_text_by_font_size(content): | |
cur_fs = [] | |
cur_text = '' | |
cur_page = -1 | |
cur_c = content[0] | |
multi_fs = False | |
snippets = [] # first collect all snippets that have the same font size | |
for c in content: | |
# print(f"c={c}\n\n") | |
if c.find('a') != None and c.find('a').get('name'): | |
cur_page = int(c.find('a').get('name')) | |
sp_list = c.find_all('span') | |
if not sp_list: | |
continue | |
for sp in sp_list: | |
# print(f"sp={sp}\n\n") | |
if not sp: | |
continue | |
st = sp.get('style') | |
if not st: | |
continue | |
fs = re.findall('font-size:(\d+)px',st) | |
# print(f"fs={fs}\n\n") | |
if not fs: | |
continue | |
fs = [int(fs[0])] | |
if len(cur_fs)==0: | |
cur_fs = fs | |
if fs == cur_fs: | |
cur_text += sp.text | |
elif not sp.find('br') and cur_c==c: | |
cur_text += sp.text | |
cur_fs.extend(fs) | |
multi_fs = True | |
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line | |
cur_fs.extend(fs) | |
snippets.append((cur_text+sp.text,max(cur_fs), cur_page)) | |
cur_fs = [] | |
cur_text = '' | |
cur_c = c | |
multi_fs = False | |
else: | |
snippets.append((cur_text,max(cur_fs), cur_page)) | |
cur_fs = fs | |
cur_text = sp.text | |
cur_c = c | |
multi_fs = False | |
snippets.append((cur_text,max(cur_fs), cur_page)) | |
return snippets | |
def get_titles_fs(fs_list): | |
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]] | |
return sorted(filtered_fs_list, reverse=True) | |
def calculate_total_characters(snippets): | |
font_sizes = {} #dictionary to store font-size and total characters | |
for text, font_size, _ in snippets: | |
#remove newline# and digits | |
cleaned_text = text.replace('\n', '') | |
#cleaned_text = re.sub(r'\d+', '', cleaned_text) | |
total_characters = len(cleaned_text) | |
#update the dictionary | |
if font_size in font_sizes: | |
font_sizes[font_size] += total_characters | |
else: | |
font_sizes[font_size] = total_characters | |
#convert the dictionary into a sorted list of tuples | |
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True) | |
return size_charac_list | |
def create_documents(source, snippets, font_sizes): | |
docs = [] | |
titles_fs = get_titles_fs(font_sizes) | |
for snippet in snippets: | |
cur_fs = snippet[1] | |
if cur_fs>font_sizes[0][0] and len(snippet[0])>2: | |
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ") | |
category = "Title" | |
else: | |
content = snippet[0].replace(" ", " ") | |
category = "Paragraph" | |
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]} | |
categories = source.split("/") | |
cat_update="" | |
if len(categories)>4: | |
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]} | |
elif len(categories)>3: | |
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]} | |
elif len(categories)>2: | |
cat_update = {"file_category":categories[1]} | |
metadata.update(cat_update) | |
docs.append(Document(page_content=content, metadata=metadata)) | |
return docs | |
## Group Chunks docx or pdf | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def group_chunks_by_section(chunks, min_chunk_size=64): | |
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed | |
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}") | |
new_chunks = [] | |
seen_paragraph = False | |
new_title = True #switches when there is a new paragraph to create a new chunk | |
for i, chunk in enumerate(filtered_chunks): | |
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}") | |
if new_title: | |
#print(f"<-- NEW title DETECTED -->") | |
new_chunk = chunk | |
new_title = False | |
add_content = False | |
new_chunk.metadata['titles'] = "" | |
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}") | |
if chunk.metadata['category'].lower() =='title': | |
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ " | |
else: | |
#Activates when a paragraph is seen after one or more titles | |
seen_paragraph = True | |
#Avoid adding the title 2 times to the page content | |
if add_content:#and chunk.page_content not in new_chunk.page_content | |
new_chunk.page_content += f"\n{chunk.page_content}" | |
#edit the end_page number, the last one keeps its place | |
try: | |
new_chunk.metadata['end_page'] = chunk.metadata['page_number'] | |
except: | |
print("", end="") | |
#print("Exception: No page number in metadata") | |
add_content = True | |
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk | |
try: | |
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document | |
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size: | |
if 'category' in new_chunk.metadata: | |
new_chunk.metadata.pop('category') | |
new_chunks.append(new_chunk) | |
new_title = True | |
seen_paragraph = False | |
#index out of range | |
except: | |
new_chunks.append(new_chunk) | |
#print('🆘 Gone through all chunks 🆘') | |
break | |
return new_chunks | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
## Split documents by font | |
def split_pdf(file_path): | |
loader = PDFMinerPDFasHTMLLoader(file_path) | |
data = loader.load()[0] # entire pdf is loaded as a single Document | |
soup = BeautifulSoup(data.page_content,'html.parser') | |
content = soup.find_all('div')#List of all elements in div tags | |
try: | |
snippets = group_text_by_font_size(content) | |
except Exception as e: | |
print("ERROR WHILE GROUPING BY FONT SIZE", e) | |
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)] | |
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size | |
chunks = create_documents(file_path, snippets, font_sizes) | |
return chunks | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_docx(file_path): | |
chunks_elms = partition_docx(filename=file_path) | |
chunks = [] | |
file_categories = file_path.split("/") | |
for chunk_elm in chunks_elms: | |
category = chunk_elm.category | |
if category == "Title": | |
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict()) | |
else: | |
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict()) | |
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]} | |
cat_update="" | |
if len(file_categories)>4: | |
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]} | |
elif len(file_categories)>3: | |
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]} | |
elif len(file_categories)>2: | |
cat_update = {"file_category":file_categories[1]} | |
metadata.update(cat_update) | |
chunk.metadata.update(metadata) | |
chunks.append(chunk) | |
return chunks | |
def split_txt(file_path, chunk_size=700): | |
with open(file_path, 'r') as file: | |
content = file.read() | |
words = content.split() | |
chunks = [words[i:i + chunk_size] for i in range(0, len(words), chunk_size)] | |
file_basename = os.path.basename(file_path) | |
file_directory = os.path.dirname(file_path) | |
source = file_path | |
documents = [] | |
for i, chunk in enumerate(chunks): | |
tcontent = ' '.join(chunk) | |
metadata = { | |
'source': source, | |
"filename": file_basename, | |
'file_directory': file_directory, | |
"file_category": "", | |
"file_sub-cat": "", | |
"file_sub2-cat": "", | |
"category": "", | |
"filetype": source.split(".")[-1], | |
"page_number": i | |
} | |
document = Document(page_content=tcontent, metadata=metadata) | |
documents.append(document) | |
return documents | |
# Load the index of documents (if it has already been built) | |
def rebuild_index(input_folder, output_folder): | |
paths_time = [] | |
to_keep = set() | |
print(f'number of files {len(paths_time)}') | |
if len(output_folder.list_paths_in_partition()) > 0: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
for f in output_folder.list_paths_in_partition(): | |
with output_folder.get_download_stream(f) as stream: | |
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2: | |
f2.write(stream.read()) | |
index = FAISS.load_local(temp_dir, embeddings) | |
to_remove = [] | |
logging.info(f"{len(index.docstore._dict)} vectors loaded") | |
for idx, doc in index.docstore._dict.items(): | |
source = (doc.metadata["source"], doc.metadata["last_modified"]) | |
if source in paths_time: | |
# Identify documents already indexed and still present in the source folder | |
to_keep.add(source) | |
else: | |
# Identify documents removed from the source folder | |
to_remove.append(idx) | |
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()} | |
# Remove documents that have been deleted from the source folder | |
vectors_to_remove = [] | |
for idx in to_remove: | |
del index.docstore._dict[idx] | |
ind = docstore_id_to_index[idx] | |
del index.index_to_docstore_id[ind] | |
vectors_to_remove.append(ind) | |
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64)) | |
index.index_to_docstore_id = { | |
i: ind | |
for i, ind in enumerate(index.index_to_docstore_id.values()) | |
} | |
logging.info(f"{len(to_remove)} vectors removed") | |
else: | |
index = None | |
to_add = [path[0] for path in paths_time if path not in to_keep] | |
print(f'to_keep: {to_keep}') | |
print(f'to_add: {to_add}') | |
return index, to_add | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_chunks_by_tokens(documents, max_length=170, overlap=10): | |
# Create an empty list to store the resized documents | |
resized = [] | |
# Iterate through the original documents list | |
for doc in documents: | |
encoded = tokenizer.encode(doc.page_content) | |
if len(encoded) > max_length: | |
remaining_encoded = tokenizer.encode(doc.page_content) | |
while len(remaining_encoded) > 0: | |
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy()) | |
resized.append(split_doc) | |
remaining_encoded = remaining_encoded[max(10, max_length - overlap):] | |
else: | |
resized.append(doc) | |
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}") | |
return resized | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20): | |
# Create an empty list to store the resized documents | |
resized = [] | |
previous_file="" | |
to_encode = "" | |
skip_next = False | |
# Iterate through the original documents list | |
for i, doc in enumerate(documents): | |
if skip_next: | |
skip_next = False | |
continue | |
current_file = doc.metadata['source'] | |
if current_file != previous_file: #chunk counting | |
previous_file = current_file | |
chunk_counter = 0 | |
is_first_chunk = True # Keep track of the first chunk in the document | |
to_encode += doc.page_content | |
# if last chunk < min_chunk_size we add it to the previous chunk for the splitting. | |
try: | |
if (documents[i+1] is documents[-1] or documents[i+1].metadata['source'] != documents[i+2].metadata['source']) and len(tokenizer.encode(documents[i+1].page_content)) < min_chunk_size: # if the next doc is the last doc of the current file or the last of the corpus | |
# print('SAME DOC') | |
skip_next = True | |
to_encode += documents[i+1].page_content | |
except Exception as e: | |
print(e) | |
#print(f"to_encode:\n{to_encode}") | |
encoded = tokenizer.encode(to_encode)#encode the current document | |
if len(encoded) < min_chunk_size and not skip_next: | |
# print(f"len(encoded):{len(encoded)}<min_chunk_size:{min_chunk_size}") | |
continue | |
elif skip_next: | |
split_doc = Document(page_content=tokenizer.decode(encoded).replace('<s> ', ''), metadata=doc.metadata.copy()) | |
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content)) | |
resized.append(split_doc) | |
# print(f"Added a document of {split_doc.metadata['token_length']} tokens 1") | |
to_encode = "" | |
continue | |
else: | |
# print(f"len(encoded):{len(encoded)}>=min_chunk_size:{min_chunk_size}") | |
to_encode = "" | |
if len(encoded) > max_length: | |
# print(f"len(encoded):{len(encoded)}>=max_length:{max_length}") | |
remaining_encoded = encoded | |
is_last_chunk = False | |
while len(remaining_encoded) > 1 and not is_last_chunk: | |
# Check for a period in the first 'overlap' tokens | |
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token | |
period_index_b = overlap_text.find('.')# Index by character | |
if len(remaining_encoded)>max_length + min_chunk_size: | |
# print("len(remaining_encoded)>max_length + min_chunk_size") | |
current_encoded = remaining_encoded[:max(10, max_length)] | |
else: | |
# print("not len(remaining_encoded)>max_length + min_chunk_size") | |
current_encoded = remaining_encoded #if the last chunk is to small, concatenate it with the previous one | |
is_last_chunk = True | |
split_doc = Document(page_content=tokenizer.decode(current_encoded).replace('<s> ', ''), metadata=doc.metadata.copy()) | |
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content)) | |
resized.append(split_doc) | |
# print(f"Added a document of {split_doc.metadata['token_length']} tokens 2") | |
break | |
period_index_e = -1 # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded)) | |
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk | |
# print("len(remaining_encoded)>max_length+min_chunk_size") | |
overlap_text_last = tokenizer.decode(current_encoded[-overlap:]) | |
period_index_last = overlap_text_last.find('.') | |
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1: | |
# print(f"period index last found at {period_index_last}") | |
period_index_e = period_index_last - len(overlap_text_last) | |
# print(f"period_index_e :{period_index_e}") | |
# print(f"last :{overlap_text_last}") | |
if not is_first_chunk:#starting after the period in overlap | |
# print("not is_first_chunk", period_index_b) | |
if period_index_b == -1:# Period not found in overlap | |
# print(". not found in overlap") | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # Keep regular splitting | |
else: | |
if is_last_chunk : #not the first but the last | |
# print("is_last_chunk") | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:].replace('<s> ', ''), metadata=doc.metadata.copy()) | |
#print("Should start after \".\"") | |
else: | |
# print("not is_last_chunk", period_index_e, len(to_encode)) | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # Split at the begining and the end | |
else:#first chunk | |
# print("else") | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # split only at the end if its first chunk | |
if 'titles' in split_doc.metadata: | |
# print("title in metadata") | |
chunk_counter += 1 | |
split_doc.metadata['chunk_id'] = chunk_counter | |
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation | |
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content)) | |
resized.append(split_doc) | |
print(f"Added a document of {split_doc.metadata['token_length']} tokens 3") | |
remaining_encoded = remaining_encoded[max(10, max_length - overlap):] | |
is_first_chunk = False | |
# # print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content[:50], "\n-----------------") | |
# print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") | |
# print(split_doc.page_content[:100]) | |
# # print("😂😂😂😂") | |
# print(split_doc.page_content[-100:]) | |
# print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") | |
else:# len(encoded)>min_chunk_size:#ignore the chunks that are too small | |
print(f"found a chunk with the perfect size:{len(encoded)}") | |
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶") | |
if 'titles' in doc.metadata:#check if it was splitted by or split_docx | |
chunk_counter += 1 | |
doc.metadata['chunk_id'] = chunk_counter | |
doc.metadata['token_length'] = len(encoded) | |
doc.page_content = tokenizer.decode(encoded).replace('<s> ', '') | |
resized.append(doc) | |
print(f"Added a document of {doc.metadata['token_length']} tokens 4") | |
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}") | |
return resized | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_doc_in_chunks(input_folder, base_folders, nb_pages): | |
docs = [] | |
for i, filename in enumerate(input_folder): | |
path = filename#os.path.join(input_folder, filename) | |
print(f"Treating file {i+1}/{len(input_folder)}") | |
# Select the appropriate document loader | |
chunks=[] | |
if path.endswith(".pdf"): | |
# try: | |
print("Treatment of pdf file", path) | |
raw_chunks = split_pdf(path) | |
for raw_chunk in raw_chunks: | |
print(f"BASE zzzzz LIST : {base_folders} = i = {i}") | |
raw_chunk.metadata["Base Folder"] = base_folders[i] | |
sb_chunks = group_chunks_by_section(raw_chunks) | |
if nb_pages > 0: | |
for sb_chunk in sb_chunks: | |
print(f"CHUNK PAGENUM = {sb_chunk.metadata['page_number']}") | |
if int(sb_chunk.metadata["page_number"])<=nb_pages: | |
chunks.append(sb_chunk) | |
else: | |
break | |
else: | |
chunks = sb_chunks | |
print(f"Document splitted in {len(chunks)} chunks") | |
# for chunk in chunks: | |
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n") | |
# except Exception as e: | |
# print("Error while splitting the pdf file: ", e) | |
elif path.endswith(".docx"): | |
try: | |
print ("Treatment of docx file", path) | |
raw_chunks = split_docx(path) | |
for raw_chunk in raw_chunks: | |
raw_chunk.metadata["Base Folder"] = base_folders[i] | |
#print(f"RAW :\n***\n{raw_chunks}") | |
chunks = group_chunks_by_section(raw_chunks) | |
print(f"Document splitted in {len(chunks)} chunks") | |
#if "cards-Jan 2022-SP.docx" in path: | |
#for chunk in chunks: | |
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n") | |
except Exception as e: | |
print("Error while splitting the docx file: ", e) | |
elif path.endswith(".doc"): | |
try: | |
loader = UnstructuredFileLoader(path) | |
# Load the documents and split them in chunks | |
chunks = loader.load_and_split(text_splitter=text_splitter) | |
counter, counter2 = collections.Counter(), collections.Counter() | |
filename = os.path.basename(path) | |
# Define a unique id for each chunk | |
for chunk in chunks: | |
chunk.metadata["filename"] = filename.split("/")[-1] | |
chunk.metadata["file_directory"] = filename.split("/")[:-1] | |
chunk.metadata["filetype"] = filename.split(".")[-1] | |
chunk.metadata["Base Folder"] = base_folders[i] | |
if "page" in chunk.metadata: | |
counter[chunk.metadata['page']] += 1 | |
for i in range(len(chunks)): | |
counter2[chunks[i].metadata['page']] += 1 | |
chunks[i].metadata['source'] = filename | |
else: | |
if len(chunks) == 1: | |
chunks[0].metadata['source'] = filename | |
#The file type is not supported (e.g. .xlsx) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
elif path.endswith(".txt"): | |
try: | |
print ("Treatment of txt file", path) | |
chunks = split_txt(path) | |
for chunk in chunks: | |
chunk.metadata["Base Folder"] = base_folders[i] | |
print(f"Document splitted in {len(chunks)} chunks") | |
except Exception as e: | |
print("Error while splitting the docx file: ", e) | |
try: | |
if len(chunks)>0: | |
docs += chunks | |
except NameError as e: | |
print(f"An error has occured: {e}") | |
return docs | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def resplit_by_end_of_sentence(docs, max_len, overlap, min_len): | |
print("❌❌\nResplitting docs by end of sentence\n❌❌") | |
resized_docs = split_chunks_by_tokens_period(docs, max_len, overlap, min_len) | |
try: | |
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter | |
cur_source = "" | |
cpt_chunk = 1 | |
for resized_doc in resized_docs: | |
try: | |
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case | |
if title not in resized_doc.page_content: | |
resized_doc.page_content = title + "\n" + resized_doc.page_content | |
if cur_source == resized_doc.metadata["source"]: | |
resized_doc.metadata['chunk_number'] = cpt_chunk | |
else: | |
cpt_chunk = 1 | |
cur_source = resized_doc.metadata["source"] | |
resized_doc.metadata['chunk_number'] = cpt_chunk | |
except Exception as e:#either the title was notfound or title absent in metadata | |
print("An error occured: ", e) | |
#print(f"METADATA:\n{resized_doc.metadata}") | |
cpt_chunk += 1 | |
except Exception as e: | |
print('AN ERROR OCCURRED: ', e) | |
return resized_docs | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def build_index(docs, index, output_folder): | |
if len(docs) > 0: | |
if index is not None: | |
# Compute the embedding of each chunk and index these chunks | |
new_index = FAISS.from_documents(docs, embeddings) | |
index.merge_from(new_index) | |
else: | |
index = FAISS.from_documents(docs, embeddings) | |
with tempfile.TemporaryDirectory() as temp_dir: | |
index.save_local(temp_dir) | |
for f in os.listdir(temp_dir): | |
output_folder.upload_file(f, os.path.join(temp_dir, f)) | |
def extract_zip(zip_path): | |
extracted_files = [] | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
for file_info in zip_ref.infolist(): | |
extracted_files.append(file_info.filename) | |
zip_ref.extract(file_info.filename) | |
return extracted_files | |
def split_in_df(files, nb_pages): | |
processed_files = [] | |
base_folders = [] | |
print("Processing zip files...") | |
for file_path in files: | |
if file_path.endswith('.zip'): | |
extracted_files = extract_zip(file_path) | |
processed_files.extend(extracted_files) | |
base_folders.extend([os.path.splitext(os.path.basename(file_path))[0]] * len(extracted_files)) | |
else: | |
processed_files.append(file_path) | |
base_folders.append("") | |
print(f"BASE FOLDERS LIST : {base_folders}, FILES LIST : {processed_files}") | |
print("Finished processing zip files\nSplitting files into chunks...") | |
documents = split_doc_in_chunks(processed_files, base_folders, nb_pages) | |
re_docs = resplit_by_end_of_sentence(documents, 700, 100, 1000) | |
print("Finished splitting") | |
df = pd.DataFrame() | |
for re_doc in re_docs: | |
filename = re_doc.metadata['filename'] | |
content = re_doc.page_content | |
# metadata = document.metadata | |
# metadata_keys = list(metadata.keys()) | |
# metadata_values = list(metadata.values()) | |
doc_data = {'Filename': filename, 'Content': content} | |
doc_data["Token_Length"] = re_doc.metadata['token_length'] | |
doc_data["Titles"] = re_doc.metadata['titles'] if 'titles' in re_doc.metadata else "" | |
doc_data["Base Folder"] = re_doc.metadata["Base Folder"] | |
# for key, value in zip(metadata_keys, metadata_values): | |
# doc_data[key] = value | |
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True) | |
df.to_excel("dataframe.xlsx", index=False) | |
return "dataframe.xlsx" | |
# -------------------------------------------------------------------------------- SPLIT FILES BY KEYWORDS | |
def split_by_keywords(files, key_words, words_limit=1000): | |
processed_files = [] | |
extracted_content = [] | |
tabLine = [] | |
# For each files : stock the PDF, extract the Zips and convert the Doc & Docx to PDF | |
try: | |
not_duplicate = True | |
for f in files: | |
for p in processed_files: | |
if (f[:f.rfind('.')] == p[:p.rfind('.')]): | |
not_duplicate = False | |
if not_duplicate: | |
if f.endswith('.zip'): | |
extracted_files = extract_zip(f) | |
print(f"Those are my extracted files{extracted_files}") | |
for doc in extracted_files: | |
if doc.endswith('.doc') or doc.endswith('.docx'): | |
processed_files.append(transform_to_pdf(doc)) | |
if doc.endswith('.pdf'): | |
processed_files.append(doc) | |
if f.endswith('.pdf'): | |
processed_files.append(f) | |
if f.endswith('.doc') or f.endswith('.docx'): | |
processed_files.append(transform_to_pdf(f)) | |
except Exception as ex: | |
print(f"Error occured while processing files : {ex}") | |
# For each processed files extract content | |
for file in processed_files: | |
try: | |
file_name = file | |
file = PdfReader(file) | |
pdfNumberPages = len(file.pages) | |
for pdfPage in range(0, pdfNumberPages): | |
load_page = file.get_page(pdfPage) | |
text = load_page.extract_text() | |
lines = text.split("\n") | |
sizeOfLines = len(lines) - 1 | |
for index, line in enumerate(lines): | |
print(line) | |
for key in key_words: | |
if key in line: | |
print("Found keyword") | |
lineBool = True | |
lineIndex = index | |
previousSelectedLines = [] | |
stringLength = 0 | |
linesForSelection = lines | |
loadOnce = True | |
selectedPdfPage = pdfPage | |
while lineBool: | |
print(lineIndex) | |
if stringLength > words_limit or lineIndex < 0: | |
lineBool = False | |
else: | |
if lineIndex == 0: | |
print(f"Line index == 0") | |
if pdfPage == 0: | |
lineBool = False | |
else: | |
try: | |
selectedPdfPage -= 1 | |
newLoad_page = file.get_page(selectedPdfPage) | |
newText = newLoad_page.extract_text() | |
newLines = newText.split("\n") | |
linesForSelection = newLines | |
print(f"len newLines{len(newLines)}") | |
lineIndex = len(newLines) - 1 | |
except Exception as e: | |
print(f"Loading previous PDF page failed") | |
lineBool = False | |
previousSelectedLines.append(linesForSelection[lineIndex]) | |
stringLength += len(linesForSelection[lineIndex]) | |
lineIndex -= 1 | |
previousSelectedLines = ' '.join(previousSelectedLines[::-1]) | |
lineBool = True | |
lineIndex = index + 1 | |
nextSelectedLines = "" | |
linesForSelection = lines | |
loadOnce = True | |
selectedPdfPage = pdfPage | |
while lineBool: | |
if len(nextSelectedLines.split()) > words_limit: | |
lineBool = False | |
else: | |
if lineIndex > sizeOfLines: | |
lineBool = False | |
if pdfPage == pdfNumberPages - 1: | |
lineBool = False | |
else: | |
try: | |
selectedPdfPage += 1 | |
newLoad_page = file.get_page(selectedPdfPage) | |
newText = newLoad_page.extract_text() | |
newLines = newText.split("\n") | |
linesForSelection = newLines | |
lineIndex = 0 | |
except Exception as e: | |
print(f"Loading next PDF page failed") | |
lineBool = False | |
else: | |
nextSelectedLines += " " + linesForSelection[lineIndex] | |
lineIndex += 1 | |
print(f"Previous Lines : {previousSelectedLines}") | |
print(f"Next Lines : {nextSelectedLines}") | |
selectedText = previousSelectedLines + ' ' + nextSelectedLines | |
print(selectedText) | |
tabLine.append([file_name, selectedText, key]) | |
print(f"Selected line in keywords is: {line}") | |
except Exception as ex: | |
print(f"Error occured while extracting content : {ex}") | |
for r in tabLine: | |
text_joined = ''.join(r[1]) | |
text_joined = r[2] + " : \n " + text_joined | |
extracted_content.append([r[0], text_joined]) | |
df = pd.DataFrame() | |
for content in extracted_content: | |
filename = content[0] | |
text = content[1] | |
# metadata = document.metadata | |
# metadata_keys = list(metadata.keys()) | |
# metadata_values = list(metadata.values()) | |
doc_data = {'Filename': filename[filename.rfind("/")+1:], 'Content': text} | |
# for key, value in zip(metadata_keys, metadata_values): | |
# doc_data[key] = value | |
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True) | |
df.to_excel("dataframe_keywords.xlsx", index=False) | |
return "dataframe_keywords.xlsx" | |
# -------------------------------------------------------------------------------- NON INTELLIGENT SPLIT | |
def transform_to_pdf(doc): | |
instructions = {'parts': [{'file': 'document'}]} | |
response = requests.request( | |
'POST', | |
'https://api.pspdfkit.com/build', | |
headers = { 'Authorization': 'Bearer pdf_live_nS6tyylSW57PNw9TIEKKL3Tt16NmLCazlQWQ9D33t0Q'}, | |
files = {'document': open(doc, 'rb')}, | |
data = {'instructions': json.dumps(instructions)}, | |
stream = True | |
) | |
pdf_name = doc[:doc.find(".doc")] + ".pdf" | |
if response.ok: | |
with open(pdf_name, 'wb') as fd: | |
for chunk in response.iter_content(chunk_size=8096): | |
fd.write(chunk) | |
return pdf_name | |
else: | |
print(response.text) | |
exit() | |
return none | |
def non_intelligent_split(files, chunk_size = 1000): | |
extracted_content = [] | |
processed_files = [] | |
# For each files : stock the PDF, extract the Zips and convert the Doc & Docx to PDF | |
try: | |
not_duplicate = True | |
for f in files: | |
for p in processed_files: | |
if (f[:f.rfind('.')] == p[:p.rfind('.')]): | |
not_duplicate = False | |
if not_duplicate: | |
if f.endswith('.zip'): | |
extracted_files = extract_zip(f) | |
print(f"Those are my extracted files{extracted_files}") | |
for doc in extracted_files: | |
if doc.endswith('.doc') or doc.endswith('.docx'): | |
processed_files.append(transform_to_pdf(doc)) | |
if doc.endswith('.pdf'): | |
processed_files.append(doc) | |
if f.endswith('.pdf'): | |
processed_files.append(f) | |
if f.endswith('.doc') or f.endswith('.docx'): | |
processed_files.append(transform_to_pdf(f)) | |
except Exception as ex: | |
print(f"Error occured while processing files : {ex}") | |
# Extract content from each processed files | |
try: | |
for f in processed_files: | |
print(f"my filename is : {f}") | |
file = PdfReader(f) | |
pdfNumberPages = len(file.pages) | |
selectedText = "" | |
for pdfPage in range(0, pdfNumberPages): | |
load_page = file.get_page(pdfPage) | |
text = load_page.extract_text() | |
lines = text.split("\n") | |
sizeOfLines = 0 | |
for index, line in enumerate(lines): | |
sizeOfLines += len(line) | |
selectedText += " " + line | |
if sizeOfLines >= chunk_size: | |
textContent = (f"Page {str(pdfPage)} : {selectedText}") | |
extracted_content.append([f, textContent]) | |
sizeOfLines = 0 | |
selectedText = "" | |
textContent = (f"Page {str(pdfNumberPages)} : {selectedText}") | |
extracted_content.append([f, textContent]) | |
except Exception as ex: | |
print(f"Error occured while extracting content from processed files : {ex}") | |
df = pd.DataFrame() | |
for content in extracted_content: | |
filename = content[0] | |
text = content[1] | |
doc_data = {'Filename': filename[filename.rfind("/")+1:], 'Content': text} | |
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True) | |
df.to_excel("dataframe_keywords.xlsx", index=False) | |
return "dataframe_keywords.xlsx" |