Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from langchain_groq import ChatGroq | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
# Load the GROQ and OpenAI API KEY | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") | |
st.title("Gemma Model Document Q&A") | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question. | |
<context> | |
{context} | |
<context> | |
Questions: {input} | |
""" | |
) | |
def vector_embedding(uploaded_files): | |
if "vectors" not in st.session_state: | |
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
# Save the uploaded files and load them | |
with open("uploaded_files.zip", "wb") as f: | |
f.write(uploaded_files.getbuffer()) | |
# Extract the uploaded files | |
os.system("unzip -o uploaded_files.zip -d ./uploaded_data") | |
st.session_state.loader = PyPDFDirectoryLoader("./uploaded_data") # Data Ingestion | |
st.session_state.docs = st.session_state.loader.load() # Document Loading | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation | |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) # Splitting | |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector OpenAI embeddings | |
uploaded_files = st.file_uploader("Upload Your PDF Files", accept_multiple_files=True, type=["pdf"]) | |
if st.button("Documents Embedding"): | |
if uploaded_files: | |
vector_embedding(uploaded_files[0]) | |
st.write("Vector Store DB Is Ready") | |
else: | |
st.write("Please upload PDF files.") | |
prompt1 = st.text_input("Enter Your Question From Documents") | |
import time | |
if prompt1: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
start = time.process_time() | |
response = retrieval_chain.invoke({'input': prompt1}) | |
st.write(f"Response time: {time.process_time() - start} seconds") | |
st.write(response['answer']) | |
# With a streamlit expander | |
with st.expander("Document Similarity Search"): | |
# Find the relevant chunks | |
for i, doc in enumerate(response["context"]): | |
st.write(doc.page_content) | |
st.write("--------------------------------") | |