AliZain1 commited on
Commit
e0a915d
·
verified ·
1 Parent(s): 06a913c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -36
app.py CHANGED
@@ -12,60 +12,62 @@ from dotenv import load_dotenv
12
  import os
13
  load_dotenv()
14
 
15
- ## load the GROQ And OpenAI API KEY
16
- groq_api_key=os.getenv('GROQ_API_KEY')
17
- os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
18
 
19
  st.title("Gemma Model Document Q&A")
20
 
21
- llm=ChatGroq(groq_api_key=groq_api_key,
22
- model_name="Llama3-8b-8192")
23
 
24
- prompt=ChatPromptTemplate.from_template(
25
  """
26
  Answer the questions based on the provided context only.
27
- Please provide the most accurate response based on the question
28
  <context>
29
  {context}
30
  <context>
31
- Questions:{input}
32
-
33
  """
34
  )
35
 
36
- def vector_embedding():
37
-
38
  if "vectors" not in st.session_state:
39
-
40
- st.session_state.embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
41
- st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
42
- st.session_state.docs=st.session_state.loader.load() ## Document Loading
43
- st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
44
- st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
45
- st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
46
-
47
-
48
-
49
-
50
-
51
- prompt1=st.text_input("Enter Your Question From Doduments")
52
-
 
 
53
 
54
  if st.button("Documents Embedding"):
55
- vector_embedding()
56
- st.write("Vector Store DB Is Ready")
57
-
58
- import time
 
59
 
 
60
 
 
61
 
62
  if prompt1:
63
- document_chain=create_stuff_documents_chain(llm,prompt)
64
- retriever=st.session_state.vectors.as_retriever()
65
- retrieval_chain=create_retrieval_chain(retriever,document_chain)
66
- start=time.process_time()
67
- response=retrieval_chain.invoke({'input':prompt1})
68
- print("Response time :",time.process_time()-start)
69
  st.write(response['answer'])
70
 
71
  # With a streamlit expander
@@ -73,4 +75,4 @@ if prompt1:
73
  # Find the relevant chunks
74
  for i, doc in enumerate(response["context"]):
75
  st.write(doc.page_content)
76
- st.write("--------------------------------")
 
12
  import os
13
  load_dotenv()
14
 
15
+ # Load the GROQ and OpenAI API KEY
16
+ groq_api_key = os.getenv('GROQ_API_KEY')
17
+ os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
18
 
19
  st.title("Gemma Model Document Q&A")
20
 
21
+ llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
 
22
 
23
+ prompt = ChatPromptTemplate.from_template(
24
  """
25
  Answer the questions based on the provided context only.
26
+ Please provide the most accurate response based on the question.
27
  <context>
28
  {context}
29
  <context>
30
+ Questions: {input}
 
31
  """
32
  )
33
 
34
+ def vector_embedding(uploaded_files):
 
35
  if "vectors" not in st.session_state:
36
+ st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
37
+
38
+ # Save the uploaded files and load them
39
+ with open("uploaded_files.zip", "wb") as f:
40
+ f.write(uploaded_files.getbuffer())
41
+
42
+ # Extract the uploaded files
43
+ os.system("unzip -o uploaded_files.zip -d ./uploaded_data")
44
+
45
+ st.session_state.loader = PyPDFDirectoryLoader("./uploaded_data") # Data Ingestion
46
+ st.session_state.docs = st.session_state.loader.load() # Document Loading
47
+ st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
48
+ st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) # Splitting
49
+ st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector OpenAI embeddings
50
+
51
+ uploaded_files = st.file_uploader("Upload Your PDF Files", accept_multiple_files=True, type=["pdf"])
52
 
53
  if st.button("Documents Embedding"):
54
+ if uploaded_files:
55
+ vector_embedding(uploaded_files[0])
56
+ st.write("Vector Store DB Is Ready")
57
+ else:
58
+ st.write("Please upload PDF files.")
59
 
60
+ prompt1 = st.text_input("Enter Your Question From Documents")
61
 
62
+ import time
63
 
64
  if prompt1:
65
+ document_chain = create_stuff_documents_chain(llm, prompt)
66
+ retriever = st.session_state.vectors.as_retriever()
67
+ retrieval_chain = create_retrieval_chain(retriever, document_chain)
68
+ start = time.process_time()
69
+ response = retrieval_chain.invoke({'input': prompt1})
70
+ st.write(f"Response time: {time.process_time() - start} seconds")
71
  st.write(response['answer'])
72
 
73
  # With a streamlit expander
 
75
  # Find the relevant chunks
76
  for i, doc in enumerate(response["context"]):
77
  st.write(doc.page_content)
78
+ st.write("--------------------------------")