Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
os.system('pip install dashscope -U') | |
import tempfile | |
from pathlib import Path | |
import secrets | |
import dashscope | |
from dashscope import MultiModalConversation, Generation | |
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN') | |
dashscope.api_key = YOUR_API_TOKEN | |
math_messages = [] | |
def process_image(image): | |
global math_messages | |
math_messages = [] # reset when upload image | |
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str( | |
Path(tempfile.gettempdir()) / "gradio" | |
) | |
os.makedirs(uploaded_file_dir, exist_ok=True) | |
name = f"tmp{secrets.token_hex(20)}.jpg" | |
filename = os.path.join(uploaded_file_dir, name) | |
image.save(filename) | |
# Use qwen-vl-max-0809 for OCR | |
messages = [{ | |
'role': 'system', | |
'content': [{'text': 'You are a helpful assistant.'}] | |
}, { | |
'role': 'user', | |
'content': [ | |
{'image': f'file://{filename}'}, | |
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'} | |
] | |
}] | |
response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages) | |
os.remove(filename) | |
return response.output.choices[0]["message"]["content"] | |
def get_math_response(image_description, user_question): | |
global math_messages | |
if not math_messages: | |
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'}) | |
math_messages = math_messages[:1] + math_messages[1:][-4:] | |
if image_description is not None: | |
content = f'Image description: {image_description}\n\n' | |
else: | |
content = '' | |
query = f"{content}User question: {user_question}" | |
math_messages.append({'role': 'user', 'content': query}) | |
response = Generation.call( | |
model="qwen2-math-72b-instruct", | |
messages=math_messages, | |
result_format='message', | |
stream=True | |
) | |
answer = None | |
for resp in response: | |
if resp.output is None: | |
continue | |
answer = resp.output.choices[0].message.content | |
yield answer.replace("\\", "\\\\") | |
print(f'query: {query}\nanswer: {answer}') | |
if answer is None: | |
math_messages.pop() | |
else: | |
math_messages.append({'role': 'assistant', 'content': answer}) | |
def math_chat_bot(image, question): | |
if image is not None: | |
image_description = process_image(image) | |
else: | |
image_description = None | |
yield from get_math_response(image_description, question) | |
css = """ | |
#qwen-md .katex-display { display: inline; } | |
#qwen-md .katex-display>.katex { display: inline; } | |
#qwen-md .katex-display>.katex>.katex-html { display: inline; } | |
""" | |
# Create interface | |
iface = gr.Interface( | |
css=css, | |
fn=math_chat_bot, | |
inputs=[ | |
gr.Image(type="pil", label="upload image"), | |
gr.Textbox(label="input your question") | |
], | |
outputs=gr.Markdown(label="answer", latex_delimiters=[ | |
{"left": "\\(", "right": "\\)", "display": True}, | |
{"left": "\\begin\{equation\}", "right": "\\end\{equation\}", "display": True}, | |
{"left": "\\begin\{align\}", "right": "\\end\{align\}", "display": True}, | |
{"left": "\\begin\{alignat\}", "right": "\\end\{alignat\}", "display": True}, | |
{"left": "\\begin\{gather\}", "right": "\\end\{gather\}", "display": True}, | |
{"left": "\\begin\{CD\}", "right": "\\end\{CD\}", "display": True}, | |
{"left": "\\[", "right": "\\]", "display": True} | |
], elem_id="qwen-md"), | |
# title="📖 Qwen2 Math Demo", | |
allow_flagging='never', | |
description="""\ | |
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>""" | |
"""<center><font size=8>📖 Qwen2 Math Demo</center>""" | |
"""\ | |
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>""" | |
) | |
# Launch gradio application | |
iface.launch() | |