Spaces:
Running
Running
title: README | |
emoji: π | |
colorFrom: red | |
colorTo: yellow | |
sdk: static | |
pinned: false | |
license: mit | |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328b534b0910efc278133ba/iXsFX9ZfyKbn8JSH_ohi_.png) | |
# Albumentations | |
Efficient Image Augmentation for Machine Learning in Python | |
[Albumentations](https://albumentations.ai/) is a fast, flexible image augmentation library designed for machine learning practitioners working on computer vision tasks. Our aim is simple: provide a comprehensive set of tools that can transform any image to augment your datasets, thereby improving model accuracy and robustness. | |
Features: | |
- [Wide Range of Augmentations](https://albumentations.ai/docs/api_reference/full_reference/): Supports geometric transforms, color augmentations, flips, rotations, and more, tailored for classification, segmentation, object detection, and working with key points. | |
- [Easy Integration](https://albumentations.ai/docs/#examples): Designed to easily fit into any machine learning pipeline. | |
- [Performance Optimized](https://albumentations.ai/docs/benchmarking_results/): Minimizes CPU/GPU load with efficient implementation. | |
- Community Driven: Open to contributions and feedback. We evolve with your needs. | |
```python | |
from albumentations import ( | |
HorizontalFlip, Affine, CLAHE, RandomRotate90, | |
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, | |
GaussNoise, MotionBlur, MedianBlur, | |
RandomBrightnessContrast, Flip, OneOf, Compose | |
) | |
import numpy as np | |
def strong_aug(p=0.5): | |
return Compose([ | |
RandomRotate90(), | |
Flip(), | |
Transpose(), | |
GaussNoise(), | |
OneOf([ | |
MotionBlur(p=0.2), | |
MedianBlur(blur_limit=3, p=0.1), | |
Blur(blur_limit=3, p=0.1), | |
], p=0.2), | |
Affine(translate_percent=0.0625, scale=(0.8, 1.2), rotate_limit=(-45, 45), p=0.2), | |
OneOf([ | |
OpticalDistortion(p=0.3), | |
GridDistortion(p=0.1) | |
], p=0.2), | |
OneOf([ | |
CLAHE(clip_limit=2), | |
RandomBrightnessContrast(), | |
], p=0.3), | |
HueSaturationValue(p=0.3), | |
], p=p) | |
image = np.ones((300, 300, 3), dtype=np.uint8) | |
mask = np.ones((300, 300), dtype=np.uint8) | |
whatever_data = "my name" | |
augmentation = strong_aug(p=0.9) | |
data = {"image": image, "mask": mask, "whatever_data": whatever_data, "additional": "hello"} | |
augmented = augmentation(**data) | |
image, mask, whatever_data, additional = augmented["image"], augmented["mask"], augmented["whatever_data"], augmented["additional"] | |
``` | |