Akshay Chame
πŸš€ Add LinkedIn Profile Enhancer Streamlit app with all agents and dependencies
035c4af
import streamlit as st
import json
import pandas as pd
from agents.orchestrator import ProfileOrchestrator
from agents.scraper_agent import ScraperAgent
from agents.content_agent import ContentAgent
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
# Configure Streamlit page
st.set_page_config(
page_title="πŸš€ LinkedIn Profile Enhancer",
page_icon="πŸš€",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 10px;
color: white;
text-align: center;
margin-bottom: 2rem;
}
.metric-card {
background: #f8f9fa;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #667eea;
margin: 0.5rem 0;
}
.success-card {
background: #d4edda;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #28a745;
margin: 0.5rem 0;
}
.warning-card {
background: #fff3cd;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #ffc107;
margin: 0.5rem 0;
}
.info-card {
background: #e7f3ff;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #17a2b8;
margin: 0.5rem 0;
}
.stTabs > div > div > div > div {
padding: 1rem;
}
.profile-section {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
def initialize_session_state():
"""Initialize session state variables"""
if 'orchestrator' not in st.session_state:
st.session_state.orchestrator = ProfileOrchestrator()
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'profile_data' not in st.session_state:
st.session_state.profile_data = None
if 'suggestions' not in st.session_state:
st.session_state.suggestions = None
if 'current_url' not in st.session_state:
st.session_state.current_url = None
def clear_results_if_url_changed(linkedin_url):
"""Clear cached results if URL has changed"""
if st.session_state.current_url != linkedin_url:
st.session_state.analysis_results = None
st.session_state.profile_data = None
st.session_state.suggestions = None
st.session_state.current_url = linkedin_url
st.cache_data.clear() # Clear any Streamlit cache
print(f"πŸ”„ URL changed to: {linkedin_url} - Clearing cached data")
def create_header():
"""Create the main header"""
st.markdown("""
<div class="main-header">
<h1>πŸš€ LinkedIn Profile Enhancer</h1>
<p style="font-size: 1.2em; margin: 1rem 0;">AI-powered LinkedIn profile analysis and enhancement suggestions</p>
<div style="display: flex; justify-content: center; gap: 2rem; margin-top: 1rem;">
<div style="text-align: center;">
<div style="font-size: 2em;">πŸ”</div>
<div>Real Scraping</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">πŸ€–</div>
<div>AI Analysis</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">🎯</div>
<div>Smart Suggestions</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">πŸ“Š</div>
<div>Data Insights</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
def create_sidebar():
"""Create the sidebar with input controls"""
with st.sidebar:
st.header("πŸ“ Configuration")
# LinkedIn URL input
linkedin_url = st.text_input(
"πŸ”— LinkedIn Profile URL",
placeholder="https://linkedin.com/in/your-profile",
help="Enter the full LinkedIn profile URL to analyze"
)
# Job description input
job_description = st.text_area(
"🎯 Target Job Description (Optional)",
placeholder="Paste the job description here for tailored suggestions...",
height=150,
help="Include job description for personalized optimization"
)
# API Status
st.subheader("πŸ”Œ API Status")
# Test API connections
if st.button("πŸ”„ Test Connections"):
with st.spinner("Testing API connections..."):
# Test Apify
try:
scraper = ScraperAgent()
apify_status = scraper.test_apify_connection()
if apify_status:
st.success("βœ… Apify: Connected")
else:
st.error("❌ Apify: Failed")
except Exception as e:
st.error(f"❌ Apify: Error - {str(e)}")
# Test OpenAI
try:
content_agent = ContentAgent()
openai_status = content_agent.test_openai_connection()
if openai_status:
st.success("βœ… OpenAI: Connected")
else:
st.error("❌ OpenAI: Failed")
except Exception as e:
st.error(f"❌ OpenAI: Error - {str(e)}")
# Examples
st.subheader("πŸ’‘ Example URLs")
example_urls = [
"https://linkedin.com/in/example-profile",
"https://www.linkedin.com/in/sample-user"
]
for url in example_urls:
if st.button(f"πŸ“‹ {url.split('/')[-1]}", key=url):
st.session_state.example_url = url
return linkedin_url, job_description
def create_metrics_display(analysis):
"""Create metrics display"""
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"πŸ“ˆ Completeness Score",
f"{analysis.get('completeness_score', 0):.1f}%",
delta=None
)
with col2:
rating = analysis.get('overall_rating', 'Unknown')
st.metric(
"⭐ Overall Rating",
rating,
delta=None
)
with col3:
st.metric(
"🎯 Job Match Score",
f"{analysis.get('job_match_score', 0):.1f}%",
delta=None
)
with col4:
keywords = analysis.get('keyword_analysis', {})
found_count = len(keywords.get('found_keywords', []))
st.metric(
"πŸ” Keywords Found",
found_count,
delta=None
)
def create_analysis_charts(analysis):
"""Create analysis charts"""
col1, col2 = st.columns(2)
with col1:
# Completeness breakdown
scores = {
'Profile Info': 20,
'About Section': 25,
'Experience': 25,
'Skills': 15,
'Education': 15
}
fig_pie = px.pie(
values=list(scores.values()),
names=list(scores.keys()),
title="Profile Section Weights",
color_discrete_sequence=px.colors.qualitative.Set3
)
fig_pie.update_layout(height=400)
st.plotly_chart(fig_pie, use_container_width=True)
with col2:
# Score comparison
current_score = analysis.get('completeness_score', 0)
target_score = 90
fig_gauge = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = current_score,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Profile Completeness"},
delta = {'reference': target_score, 'increasing': {'color': "green"}},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 50], 'color': "lightgray"},
{'range': [50, 80], 'color': "gray"},
{'range': [80, 100], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
fig_gauge.update_layout(height=400)
st.plotly_chart(fig_gauge, use_container_width=True)
def display_profile_data(profile_data):
"""Display scraped profile data in a structured format"""
if not profile_data:
st.warning("No profile data available")
return
# Profile Header with Image
st.subheader("πŸ‘€ Profile Overview")
# Create columns for profile image and basic info
col1, col2, col3 = st.columns([1, 2, 2])
with col1:
# Display profile image
profile_image = profile_data.get('profile_image_hq') or profile_data.get('profile_image')
if profile_image:
st.image(profile_image, width=150, caption="Profile Picture")
else:
st.markdown("""
<div style="width: 150px; height: 150px; background-color: #f0f0f0; border-radius: 50%;
display: flex; align-items: center; justify-content: center; font-size: 48px;">
πŸ‘€
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="info-card">
<strong>Name:</strong> {profile_data.get('name', 'N/A')}<br>
<strong>Headline:</strong> {profile_data.get('headline', 'N/A')}<br>
<strong>Location:</strong> {profile_data.get('location', 'N/A')}<br>
<strong>Connections:</strong> {profile_data.get('connections', 'N/A')}<br>
<strong>Followers:</strong> {profile_data.get('followers', 'N/A')}
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class="info-card">
<strong>Current Job:</strong> {profile_data.get('job_title', 'N/A')}<br>
<strong>Company:</strong> {profile_data.get('company_name', 'N/A')}<br>
<strong>Industry:</strong> {profile_data.get('company_industry', 'N/A')}<br>
<strong>Email:</strong> {profile_data.get('email', 'N/A')}<br>
<strong>Profile URL:</strong> <a href="{profile_data.get('url', '#')}" target="_blank">View Profile</a>
</div>
""", unsafe_allow_html=True)
# About Section
if profile_data.get('about'):
st.subheader("πŸ“ About Section")
st.markdown(f"""
<div class="profile-section">
{profile_data.get('about', 'No about section available')}
</div>
""", unsafe_allow_html=True)
# Experience
if profile_data.get('experience'):
st.subheader("πŸ’Ό Experience")
for i, exp in enumerate(profile_data.get('experience', [])):
with st.expander(f"{exp.get('title', 'Position')} at {exp.get('company', 'Company')}", expanded=i==0):
col1, col2 = st.columns([2, 1])
with col1:
st.write(f"**Duration:** {exp.get('duration', 'N/A')}")
st.write(f"**Location:** {exp.get('location', 'N/A')}")
if exp.get('description'):
st.write("**Description:**")
st.write(exp.get('description'))
with col2:
st.write(f"**Current Role:** {'Yes' if exp.get('is_current') else 'No'}")
# Skills
if profile_data.get('skills'):
st.subheader("πŸ› οΈ Skills")
skills = profile_data.get('skills', [])
if skills:
# Create a DataFrame for better display
skills_df = pd.DataFrame({'Skills': skills})
st.dataframe(skills_df, use_container_width=True)
# Education
if profile_data.get('education'):
st.subheader("πŸŽ“ Education")
for edu in profile_data.get('education', []):
st.markdown(f"""
<div class="info-card">
<strong>{edu.get('degree', 'Degree')}</strong><br>
{edu.get('school', 'School')} | {edu.get('field', 'Field')}<br>
<em>{edu.get('year', 'Year')}</em>
</div>
""", unsafe_allow_html=True)
# Raw Data (collapsible)
with st.expander("πŸ” Raw JSON Data"):
st.json(profile_data)
def display_analysis_results(analysis):
"""Display analysis results"""
if not analysis:
st.warning("No analysis results available")
return
# Metrics
create_metrics_display(analysis)
# Charts
st.subheader("πŸ“Š Analysis Visualization")
create_analysis_charts(analysis)
# Strengths and Weaknesses
col1, col2 = st.columns(2)
with col1:
st.subheader("🌟 Profile Strengths")
strengths = analysis.get('strengths', [])
if strengths:
for strength in strengths:
st.markdown(f"""
<div class="success-card">
βœ… {strength}
</div>
""", unsafe_allow_html=True)
else:
st.info("No specific strengths identified")
with col2:
st.subheader("πŸ”§ Areas for Improvement")
weaknesses = analysis.get('weaknesses', [])
if weaknesses:
for weakness in weaknesses:
st.markdown(f"""
<div class="warning-card">
πŸ”Έ {weakness}
</div>
""", unsafe_allow_html=True)
else:
st.success("No major areas for improvement identified")
# Keyword Analysis
keyword_analysis = analysis.get('keyword_analysis', {})
if keyword_analysis:
st.subheader("πŸ” Keyword Analysis")
col1, col2 = st.columns(2)
with col1:
found_keywords = keyword_analysis.get('found_keywords', [])
if found_keywords:
st.write("**Keywords Found:**")
st.write(", ".join(found_keywords[:10]))
with col2:
missing_keywords = keyword_analysis.get('missing_keywords', [])
if missing_keywords:
st.write("**Missing Keywords:**")
st.write(", ".join(missing_keywords[:5]))
def generate_suggestions_markdown(suggestions, profile_data=None):
"""Generate markdown content from suggestions"""
if not suggestions:
return "# LinkedIn Profile Enhancement Suggestions\n\nNo suggestions available."
# Get profile name for personalization
profile_name = profile_data.get('name', 'Your Profile') if profile_data else 'Your Profile'
current_date = datetime.now().strftime("%B %d, %Y")
markdown_content = f"""# LinkedIn Profile Enhancement Suggestions
**Profile:** {profile_name}
**Generated on:** {current_date}
**Powered by:** LinkedIn Profile Enhancer AI
---
## πŸ“‹ Table of Contents
"""
# Add table of contents
toc_items = []
for category in suggestions.keys():
if category == 'ai_generated_content':
toc_items.append("- [πŸ€– AI-Generated Content Suggestions](#ai-generated-content-suggestions)")
else:
category_name = category.replace('_', ' ').title()
toc_items.append(f"- [πŸ“‹ {category_name}](#{category.replace('_', '-').lower()})")
markdown_content += "\n".join(toc_items) + "\n\n---\n\n"
# Add suggestions content
for category, items in suggestions.items():
if category == 'ai_generated_content':
markdown_content += "## πŸ€– AI-Generated Content Suggestions\n\n"
ai_content = items if isinstance(items, dict) else {}
# Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
markdown_content += "### ✨ Professional Headlines\n\n"
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
markdown_content += f"{i}. {cleaned_headline}\n"
markdown_content += "\n"
# About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
markdown_content += "### πŸ“ Enhanced About Section\n\n"
markdown_content += f"```\n{ai_content['ai_about_section']}\n```\n\n"
# Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
markdown_content += "### πŸ’Ό Experience Description Ideas\n\n"
for desc in ai_content['ai_experience_descriptions']:
markdown_content += f"- {desc}\n"
markdown_content += "\n"
else:
# Standard categories
category_name = category.replace('_', ' ').title()
markdown_content += f"## πŸ“‹ {category_name}\n\n"
if isinstance(items, list):
for item in items:
markdown_content += f"- {item}\n"
else:
markdown_content += f"- {items}\n"
markdown_content += "\n"
# Add footer
markdown_content += """---
## πŸ“š Implementation Tips
### Getting Started
1. **Prioritize High-Impact Changes**: Start with headline and about section improvements
2. **Use Keywords Strategically**: Incorporate industry-relevant keywords naturally
3. **Maintain Authenticity**: Ensure all changes reflect your genuine experience and personality
4. **Regular Updates**: Keep your profile fresh with recent achievements and experiences
### Best Practices
- **Professional Photo**: Use a high-quality, professional headshot
- **Active Engagement**: Regularly share industry insights and engage with your network
- **Skills Endorsements**: Ask colleagues to endorse your key skills
- **Recommendations**: Request recommendations from supervisors and colleagues
- **Content Strategy**: Share articles, insights, and achievements regularly
### Measuring Success
- Monitor profile views and connection requests
- Track engagement on your posts and content
- Observe changes in recruiter outreach
- Measure network growth and quality
---
*This report was generated by LinkedIn Profile Enhancer AI. For best results, implement changes gradually and monitor their impact on your profile performance.*
**Need Help?** Contact support or revisit the LinkedIn Profile Enhancer tool for updated suggestions.
"""
return markdown_content
def display_suggestions(suggestions):
"""Display enhancement suggestions with download option"""
if not suggestions:
st.warning("No suggestions available")
return
# Add download button at the top
col1, col2 = st.columns([1, 4])
with col1:
# Generate markdown content
markdown_content = generate_suggestions_markdown(
suggestions,
st.session_state.get('profile_data')
)
# Create filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
profile_name = ""
if st.session_state.get('profile_data'):
name = st.session_state.profile_data.get('name', '')
if name:
# Clean name for filename
profile_name = "".join(c for c in name if c.isalnum() or c in (' ', '_')).rstrip()
profile_name = profile_name.replace(' ', '_') + "_"
filename = f"linkedin_suggestions_{profile_name}{timestamp}.md"
st.download_button(
label="πŸ“₯ Download Suggestions",
data=markdown_content,
file_name=filename,
mime="text/markdown",
help="Download all suggestions as a markdown file",
use_container_width=True
)
with col2:
st.markdown("*πŸ’‘ Click the download button to save all suggestions as a markdown file for easy reference and implementation.*")
st.markdown("---")
# Display suggestions as before
for category, items in suggestions.items():
if category == 'ai_generated_content':
st.subheader("πŸ€– AI-Generated Content Suggestions")
ai_content = items if isinstance(items, dict) else {}
# Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
st.write("**✨ Professional Headlines:**")
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
st.write(f"{i}. {cleaned_headline}")
st.write("")
# About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
st.write("**πŸ“ Enhanced About Section:**")
st.code(ai_content['ai_about_section'], language='text')
st.write("")
# Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
st.write("**πŸ’Ό Experience Description Ideas:**")
for desc in ai_content['ai_experience_descriptions']:
st.write(f"β€’ {desc}")
st.write("")
else:
# Standard categories
category_name = category.replace('_', ' ').title()
st.subheader(f"πŸ“‹ {category_name}")
if isinstance(items, list):
for item in items:
st.write(f"β€’ {item}")
else:
st.write(f"β€’ {items}")
st.write("")
def main():
"""Main Streamlit application"""
initialize_session_state()
create_header()
# Sidebar
linkedin_url, job_description = create_sidebar()
# Main content
if st.button("πŸš€ Enhance Profile", type="primary", use_container_width=True):
if not linkedin_url.strip():
st.error("Please enter a LinkedIn profile URL")
elif not any(pattern in linkedin_url.lower() for pattern in ['linkedin.com/in/', 'www.linkedin.com/in/']):
st.error("Please enter a valid LinkedIn profile URL")
else:
# Clear cached data if URL has changed
clear_results_if_url_changed(linkedin_url)
with st.spinner("πŸ” Analyzing LinkedIn profile..."):
try:
st.info(f"πŸ” Extracting data from: {linkedin_url}")
# Get profile data and analysis (force fresh extraction)
profile_data = st.session_state.orchestrator.scraper.extract_profile_data(linkedin_url)
st.info(f"βœ… Profile data extracted for: {profile_data.get('name', 'Unknown')}")
analysis = st.session_state.orchestrator.analyzer.analyze_profile(profile_data, job_description)
suggestions = st.session_state.orchestrator.content_generator.generate_suggestions(analysis, job_description)
# Store in session state
st.session_state.profile_data = profile_data
st.session_state.analysis_results = analysis
st.session_state.suggestions = suggestions
st.success("βœ… Profile analysis completed!")
except Exception as e:
st.error(f"❌ Error analyzing profile: {str(e)}")
# Display results if available
if st.session_state.profile_data or st.session_state.analysis_results:
st.markdown("---")
# Create tabs for different views
tab1, tab2, tab3, tab4 = st.tabs(["πŸ“Š Analysis", "πŸ” Scraped Data", "🎯 Suggestions", "πŸ“ˆ Implementation"])
with tab1:
st.header("πŸ“Š Profile Analysis")
if st.session_state.analysis_results:
display_analysis_results(st.session_state.analysis_results)
else:
st.info("No analysis results available yet")
with tab2:
st.header("πŸ” Scraped Profile Data")
if st.session_state.profile_data:
display_profile_data(st.session_state.profile_data)
else:
st.info("No profile data available yet")
with tab3:
st.header("🎯 Enhancement Suggestions")
if st.session_state.suggestions:
display_suggestions(st.session_state.suggestions)
else:
st.info("No suggestions available yet")
with tab4:
st.header("πŸ“ˆ Implementation Roadmap")
if st.session_state.analysis_results:
recommendations = st.session_state.analysis_results.get('recommendations', [])
if recommendations:
st.subheader("🎯 Priority Actions")
for i, rec in enumerate(recommendations[:5], 1):
st.markdown(f"""
<div class="metric-card">
<strong>{i}.</strong> {rec}
</div>
""", unsafe_allow_html=True)
st.subheader("πŸ“Š General Best Practices")
best_practices = [
"Update your profile regularly with new achievements",
"Use professional keywords relevant to your industry",
"Engage with your network by sharing valuable content",
"Ask for recommendations from colleagues and clients",
"Monitor profile views and connection requests"
]
for practice in best_practices:
st.markdown(f"""
<div class="info-card">
πŸ”Έ {practice}
</div>
""", unsafe_allow_html=True)
else:
st.info("Complete the analysis first to see implementation suggestions")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #666; margin-top: 2rem;">
<p>πŸš€ <strong>LinkedIn Profile Enhancer</strong> | Powered by AI | Data scraped with respect to LinkedIn's ToS</p>
<p>Built with ❀️ using Streamlit, OpenAI GPT-4o-mini, and Apify</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()