AkshayKatukojwala's picture
Upload 10 files
2f5e00f verified
raw
history blame
5.92 kB
import time
import pickle
import tensorflow as tf
import pandas as pd
import tqdm
import numpy as np
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from sklearn.model_selection import train_test_split
#from tensorflow.keras.layers import Embedding, Dropout, Dense
from tensorflow.keras.models import Sequential
from keras.models import load_model
from sklearn.metrics import f1_score, precision_score, accuracy_score, recall_score
from tensorflow.keras.layers import LSTM, GlobalMaxPooling1D, Dropout, Dense, Input, Embedding, MaxPooling1D, Flatten,BatchNormalization
SEQUENCE_LENGTH = 100 # the length of all sequences (number of words per sample)
EMBEDDING_SIZE = 100 # Using 100-Dimensional GloVe embedding vectors
TEST_SIZE = 0.25 # ratio of testing set
BATCH_SIZE = 64
EPOCHS = 20 # number of epochs
label2int = {"frustrated": 0, "negative": 1,"neutral":2,"positive":3,"satisfied":4}
int2label = {0: "frustrated", 1: "negative",2:"neutral",3:"positive",4:"satisfied"}
def load_data():
data = pd.read_csv("train.csv",encoding='latin-1')
texts = data['feedback'].values
labels=data['sentiment'].values
return texts, labels
def dl_evaluation_process():
print("loading data")
X, y = load_data()
# Text tokenization
# vectorizing text, turning each text into sequence of integers
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X)
# lets dump it to a file, so we can use it in testing
pickle.dump(tokenizer, open("tokenizer.pickle", "wb"))
# convert to sequence of integers
X = tokenizer.texts_to_sequences(X)
# convert to numpy arrays
X = np.array(X)
y = np.array(y)
# pad sequences at the beginning of each sequence with 0's
# for example if SEQUENCE_LENGTH=4:
# [[5, 3, 2], [5, 1, 2, 3], [3, 4]]
# will be transformed to:
# [[0, 5, 3, 2], [5, 1, 2, 3], [0, 0, 3, 4]]
X = pad_sequences(X, maxlen=SEQUENCE_LENGTH)
y = [label2int[label] for label in y]
y = to_categorical(y)
# split and shuffle
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=7)
#print("EMD Matrix")
print("Starting...")
embedding_matrix = get_embedding_vectors(tokenizer)
if os.path.exists("lstm_model.h5"):
model_path = 'lstm_model.h5'
model = load_model(model_path)
y_test = np.argmax(y_test, axis=1)
y_pred = np.argmax(model.predict(X_test), axis=1)
acc = accuracy_score(y_test, y_pred) * 100
precsn = precision_score(y_test, y_pred, average="macro") * 100
recall = recall_score(y_test, y_pred, average="macro") * 100
f1score = f1_score(y_test, y_pred, average="macro") * 100
print("acc=", acc)
print("precsn=", precsn)
print("recall=", recall)
print("f1score=", f1score)
else:
model = Sequential()
model.add(Embedding(len(tokenizer.word_index) + 1,
EMBEDDING_SIZE,
weights=[embedding_matrix],
trainable=False,
input_length=SEQUENCE_LENGTH))
model.add(LSTM(32, return_sequences=True))
model.add(BatchNormalization())
model.add(LSTM(64))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(Dense(5, activation="softmax"))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
model.fit(X, y, epochs=50, verbose=1, validation_data=(X_test, y_test), batch_size=64)
#print("saving")
#model.save('lstm_model.h5')
#model.summary()
y_test = np.argmax(y_test, axis=1)
y_pred = np.argmax(model.predict(X_test), axis=1)
acc = accuracy_score(y_test, y_pred) * 100
precsn = precision_score(y_test, y_pred, average="macro") * 100
recall = recall_score(y_test, y_pred, average="macro") * 100
f1score = f1_score(y_test, y_pred, average="macro") * 100
print("acc=", acc)
print("precsn=", precsn)
print("recall=", recall)
print("f1score=", f1score)
return acc, precsn, recall, f1score
def get_embedding_vectors(tokenizer, dim=100):
embedding_index = {}
with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
for line in tqdm.tqdm(f, "Reading GloVe"):
values = line.split()
word = values[0]
vectors = np.asarray(values[1:], dtype='float32')
embedding_index[word] = vectors
word_index = tokenizer.word_index
embedding_matrix = np.zeros((len(word_index) + 1, dim))
for word, i in word_index.items():
embedding_vector = embedding_index.get(word)
if embedding_vector is not None:
# words not found will be 0s
embedding_matrix[i] = embedding_vector
return embedding_matrix
'''def get_predictions(text):
sequence = tokenizer.texts_to_sequences([text])
# pad the sequence
sequence = pad_sequences(sequence, maxlen=SEQUENCE_LENGTH)
# get the prediction
prediction = model.predict(sequence)[0]
# one-hot encoded vector, revert using np.argmax
return int2label[np.argmax(prediction)]
text = "Need a loan? We offer quick and easy approval. Apply now for cash in minutes!."
print(get_predictions(text))'''
if __name__ == '__main__':
dl_evaluation_process()