AkshayKatukojwala's picture
Upload 10 files
2f5e00f verified
raw
history blame
3.13 kB
import time
import pickle
import tensorflow as tf
import pandas as pd
import tqdm
import numpy as np
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from sklearn.model_selection import train_test_split
#from tensorflow.keras.layers import Embedding, Dropout, Dense
from tensorflow.keras.models import Sequential
from keras.models import load_model
from sklearn.metrics import f1_score, precision_score, accuracy_score, recall_score
from tensorflow.keras.layers import LSTM, GlobalMaxPooling1D, Dropout, Dense, Input, Embedding, MaxPooling1D, Flatten,BatchNormalization
SEQUENCE_LENGTH = 100 # the length of all sequences (number of words per sample)
EMBEDDING_SIZE = 100 # Using 100-Dimensional GloVe embedding vectors
TEST_SIZE = 0.25 # ratio of testing set
BATCH_SIZE = 64
EPOCHS = 20 # number of epochs
label2int = {"frustrated": 0, "negative": 1,"neutral":2,"positive":3,"satisfied":4}
int2label = {0: "frustrated", 1: "negative",2:"neutral",3:"positive",4:"satisfied"}
def get_embedding_vectors(tokenizer, dim=100):
embedding_index = {}
with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
for line in tqdm.tqdm(f, "Reading GloVe"):
values = line.split()
word = values[0]
vectors = np.asarray(values[1:], dtype='float32')
embedding_index[word] = vectors
word_index = tokenizer.word_index
embedding_matrix = np.zeros((len(word_index) + 1, dim))
for word, i in word_index.items():
embedding_vector = embedding_index.get(word)
if embedding_vector is not None:
# words not found will be 0s
embedding_matrix[i] = embedding_vector
return embedding_matrix
def get_predictions(text):
tokenizer = Tokenizer()
model_path = 'lstm_model.h5'
model = load_model(model_path)
sequence = tokenizer.texts_to_sequences(text)
# pad the sequence
sequence = pad_sequences(sequence, maxlen=SEQUENCE_LENGTH)
# get the prediction
prediction = model.predict(sequence)
res=[]
for p1 in prediction:
res.append(int2label[np.argmax(p1)])
return res
if __name__ == '__main__':
t=[' Sooo SAD I will miss you here in San Diego!!!', 'Stolen iPhone 15 pro', 'iPhone 15 Pro and iPhone 15 Pro Max Feature Increased 8GB of RAM', 'Apple announces iPhone 15 Pro and Pro Max', 'Temperature of my iPhone 15 Pro Max while on the phone for 5 mins.', 'I traded in my iPhone 14 Pro for the iPhone 15 Pro Max, then FedEx lost the old phone', 'iPhone 15 Pro Max crushes Google Pixel 8 Pro in speed test', 'Apple Design Team Making The New iPhone 15 Pro Max', 'iPhone 15 Pro Could Be Most Lightweight Pro Model Since iPhone XS', ' iPhone 15 Pro/Pro Max is so sad']
print(get_predictions(t))