Akjava's picture
resize back 32
feb6b51
import spaces
import gradio as gr
import re
from PIL import Image
import os
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
width, height =original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width,height
if width > height:
scaling_factor = maximum_size / width
else:
scaling_factor = maximum_size / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
@spaces.GPU(duration=120)
def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
#print("start process_images")
progress(0, desc="Starting")
def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
#print("start process_img2img")
if image == None:
print("empty input image returned")
return None
generators = []
generator = torch.Generator(device).manual_seed(seed)
generators.append(generator)
fit_width,fit_height = convert_to_fit_size(image.size)
#print(f"fit {width}x{height}")
width,height = adjust_to_multiple_of_32(fit_width,fit_height)
#print(f"multiple {width}x{height}")
image = image.resize((width, height), Image.LANCZOS)
#mask_image = mask_image.resize((width, height), Image.NEAREST)
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
#print(prompt)
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
pil_image = output.images[0]#Image.fromarray()
new_width,new_height = pil_image.size
# resize back multiple of 32
if (new_width!=fit_width) or (new_height!=fit_height):
resized_image= pil_image.resize((fit_width,fit_height),Image.LANCZOS)
return resized_image
return pil_image
output = process_img2img(image,prompt,strength,seed,inference_step)
#print("end process_images")
return output
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
id_input=gr.Text(label="Name", visible=False)
with gr.Column():
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
gr.Examples(
examples=[
["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
]
,
inputs=[image,image_out,prompt],
)
gr.HTML(
gr.HTML(read_file("demo_footer.html"))
)
gr.on(
triggers=[btn.click, prompt.submit],
fn = process_images,
inputs = [image,prompt,strength,seed,inference_step],
outputs = [image_out]
)
if __name__ == "__main__":
demo.launch()